Skip to content
Project: Clustering Antarctic Penguin Species
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica! The data is available in csv-Format as penguins.csv
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
| Column | Description |
|---|---|
| culmen_length_mm | culmen length (mm) |
| culmen_depth_mm | culmen depth (mm) |
| flipper_length_mm | flipper length (mm) |
| body_mass_g | body mass (g) |
| sex | penguin sex |
Unfortunately, they have not been able to record the species of penguin, but they know that there are at least three species that are native to the region: Adelie, Chinstrap, and Gentoo. Your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("penguins.csv")
penguins_df.head()#print(penguins_df.isna().sum()) Não tem NA
#a variavel sexo tem que ser binária
penguins_df['sex'] = np.where(penguins_df['sex'] == 'MALE', 1, 0).astype('float')
#pre processando o dataset
scaler=StandardScaler()
scaler.fit(penguins_df)
sample_scaler=scaler.transform(penguins_df)
#print(sample_scaler)
#escolhendo o numero de clusters - pela minha analise o numero ideal é 4
ks = range(1, 20)
inertias = []
for k in ks:
# Create a KMeans instance with k clusters: model
model=KMeans(n_clusters=k)
# Fit model to samples
model.fit(penguins_df)
# Append the inertia to the list of inertias
inertias.append(model.inertia_)
# Plot ks vs inertias
plt.plot(ks, inertias, '-o')
plt.xlabel('number of clusters, k')
plt.ylabel('inertia')
plt.xticks(ks)
plt.show()
#aplicando o kmeans
kmeans=KMeans(n_clusters=4)
kmeans.fit(sample_scaler)
modelo=kmeans.predict(sample_scaler)
#adicionando o resultado do modelo no DF
penguins_df['species']=modelo
#calculando a média de cada variavel por cluster
print(penguins_df.groupby('species').mean())
#salvando o resultado em um dataframe
stat_penguins=penguins_df.groupby('species').mean()
#confirmando se stat_penguins é um df
print(isinstance(stat_penguins,pd.DataFrame))