Skip to content
Project: Clustering Antarctic Penguin Species
Arctic Penguin Exploration: Unraveling Clusters in the Icy Domain with K-means clustering
source: @allison_horst https://github.com/allisonhorst/penguins
You have been asked to support a team of researchers who have been collecting data about penguins in Antartica!
Origin of this data : Data were collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.
The dataset consists of 5 columns.
- culmen_length_mm: culmen length (mm)
- culmen_depth_mm: culmen depth (mm)
- flipper_length_mm: flipper length (mm)
- body_mass_g: body mass (g)
- sex: penguin sex
Unfortunately, they have not been able to record the species of penguin, but they know that there are three species that are native to the region: Adelie, Chinstrap, and Gentoo, so your task is to apply your data science skills to help them identify groups in the dataset!
# Import Required Packages
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Loading and examining the dataset
penguins_df = pd.read_csv("data/penguins.csv")'''
Notes:
- Reduce dimensionality
Steps:
- Clean the dataset -> penguins_clean
- Preprocess -> penguins_preprocessed
- Perform PCA -> penguins_PCA
- Employ kmeans clustering, perform elbow analysis -> n_clusters
- Fit kmeans cluster model -> kmeans
- Visualize
- Add the label to penguins_clean
- Create a statistical table -> stat_penguins
'''# Cleaning
# Dealing with null values and outliers
penguins_df.dropna(inplace=True)
# ERROR SUBMITING PROJECT
# print(penguins_df["sex"].unique())
# penguins_df = penguins_df[penguins_df["sex"] != "."]
# Boxplot visualization
def plot_boxplots(df):
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g']
for i in range(2):
for j in range(2):
column_name = columns[i * 2 + j]
axs[i, j].boxplot(df[column_name])
axs[i, j].set_title(column_name.replace('_', ' '))
plt.tight_layout()
plt.show()
plot_boxplots(penguins_df)
# Removing outliers
# Calculate the percentiles
q1 = penguins_df['flipper_length_mm'].quantile(0.25)
q3 = penguins_df['flipper_length_mm'].quantile(0.75)
# Calculate IQR
IQR = q3 - q1
# Set Multiplying factor
factor = 1.5
# Calculate the limits
lower_limit = q1 - (IQR * factor)
upper_limit = q3 + (IQR * factor)
# Filter
penguins_clean = penguins_df[(penguins_df['flipper_length_mm'] >= lower_limit) & (penguins_df['flipper_length_mm'] <= upper_limit)]
plot_boxplots(penguins_clean)# Preprocessing
# Creating dummy variables for categorical feature (sex)
df = pd.get_dummies(penguins_clean).drop(columns="sex_.")
print(df.head())
# Scaling
scaler = StandardScaler()
penguins_preprocessed = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
print(penguins_preprocessed.head())# Performing PCA
model = PCA()
model.fit(penguins_preprocessed.values)
print(model.explained_variance_ratio_)
n_components = 2
pca = PCA(n_components=n_components)
penguins_PCA = pca.fit_transform(penguins_preprocessed.values)
# Performing Elbow analysis
inertia = []
for i in range(1,10):
kmeans = KMeans(n_clusters=i, random_state=42)
kmeans.fit(penguins_PCA)
inertia.append(kmeans.inertia_)
# Plot the elbow
plt.plot(range(1, 10), inertia, marker='o')
plt.title('Elbow Analysis')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
n_clusters = 4
# k-means clustering algorithm
kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(penguins_PCA)
plt.scatter(penguins_PCA[:,0], penguins_PCA[:,1], c = kmeans.labels_)
plt.show()
# Creating final statistical DataFrame
penguins_clean["label"] = kmeans.labels_
numeric_columns = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g']
stat_penguins = penguins_clean.groupby('label')[numeric_columns].mean()
print(stat_penguins)