Skip to content

Creating Single Tool Calling

Defining get_stock_price Python Function

!pip install yahooquery -q
from openai import OpenAI
import json
from yahooquery import Ticker

def get_stock_price(ticker):
    try:
        # Create a Ticker object for the provided ticker symbol
        t = Ticker(ticker)
        # Retrieve the price data
        price_data = t.price
        # Check if we received valid data for the ticker
        if ticker in price_data and price_data[ticker].get("regularMarketPrice") is not None:
            price = price_data[ticker]["regularMarketPrice"]
        else:
            return f"Price information for {ticker} is unavailable."
    except Exception as e:
        return f"Failed to retrieve data for {ticker}: {str(e)}"
    
    return f"{ticker} is currently trading at ${price:.2f}"

Define the tool with the get_stock_price function

tools = [{
    "type": "function",
    "function": {
        "name": "get_stock_price",
        "description": "Get current stock price for a provided ticker symbol from Yahoo Finance using the yahooquery Python library.",
        "parameters": {
            "type": "object",
            "properties": {
                "ticker": {"type": "string"}
            },
            "required": ["ticker"],
            "additionalProperties": False
        },
        "strict": True
    }
}]

Let the model decide if it should call the get_stock_price function

client = OpenAI()

messages = [{"role": "user", "content": "What's the current price of Meta stock?"}]

completion = client.chat.completions.create(
    model="gpt-4.5-preview",
    messages=messages,
    tools=tools,
)

print(completion.choices[0].message.tool_calls)

Execute the get_stock_price function with the provided ticker

tool_call = completion.choices[0].message.tool_calls[0]
args = json.loads(tool_call.function.arguments)

result = get_stock_price(args["ticker"])

print(result)

Append both the model's function call and our tool result to the conversation

messages.append(completion.choices[0].message)  # Model's function call message
messages.append({
    "role": "tool",
    "tool_call_id": tool_call.id,
    "content": str(result)
})

Send the updated conversation back to the model so it can incorporate the tool result


completion_2 = client.chat.completions.create(
    model="gpt-4.5-preview",
    messages=messages,
    tools=tools,
)

# The final model response incorporating the stock price information
print(completion_2.choices[0].message.content)

Creating the Multiple Tool Calling