Recurrent Neural Networks (RNNs) for Language Modeling with Keras
Learn how to use RNNs to classify text sentiment, generate sentences, and translate text between languages.
Siga videos cortos dirigidos por instructores expertos y luego practique lo que ha aprendido con ejercicios interactivos en su navegador.
o
Al continuar, aceptas nuestros Términos de uso, nuestra Política de privacidad y que tus datos se almacenen en los EE. UU.Learn how to use RNNs to classify text sentiment, generate sentences, and translate text between languages.
Learn how computers work, design efficient algorithms, and explore computational theory to solve real-world problems.
Learn to distinguish real differences from random noise, and explore psychological crutches we use that interfere with our rational decision making.
Aprende a utilizar Amazon Bedrock para acceder a modelos básicos de IA y crear con IA, sin necesidad de gestionar una infraestructura compleja.
Apply statistical modeling in a real-life setting using logistic regression and decision trees to model credit risk.
Mejora tus conocimientos de KNIME con el curso sobre transformación de datos, operaciones con columnas y optimización del flujo de trabajo.
Learn tools and techniques to leverage your own big data to facilitate positive experiences for your users.
Learn how to manipulate, visualize, and perform statistical tests through a series of HR analytics case studies.
Leverage tidyr and purrr packages in the tidyverse to generate, explore, and evaluate machine learning models.
Learn how bonds work and how to price them and assess some of their risks using the numpy and numpy-financial packages.
Master core concepts about data manipulation such as filtering, selecting and calculating groupwise statistics using data.table.
Work with risk-factor return series, study their empirical properties, and make estimates of value-at-risk.
Learn how to use Python parallel programming with Dask to upscale your workflows and efficiently handle big data.
Learn how to write effective tests in Java using JUnit and Mockito to build robust, reliable applications with confidence.
Make it easy to visualize, explore, and impute missing data with naniar, a tidyverse friendly approach to missing data.
From customer lifetime value, predicting churn to segmentation - learn and implement Machine Learning use cases for Marketing in Python.
Learn about GARCH Models, how to implement them and calibrate them on financial data from stocks to foreign exchange.
Aprende a reducir los tiempos de entrenamiento de grandes modelos lingüísticos con el Acelerador y el Entrenador para el entrenamiento distribuido
Dive into our Tableau case study on supply chain analytics. Tackle shipment, inventory management, and dashboard creation to drive business improvements.
Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.
Create a healthcare AI agent using Haystack, an open-source framework for orchestrating LLMs and external components.
Explore latent variables, such as personality, using exploratory and confirmatory factor analyses.
Learn how to pull character strings apart, put them back together and use the stringr package.
Azure Security
In this course, youll learn how to collect Twitter data and analyze Twitter text, networks, and geographical origin.
Learn how to analyze business processes in R and extract actionable insights from enormous sets of event data.
Learn to solve increasingly complex problems using simulations to generate and analyze data.
Prepare for your next statistics interview by reviewing concepts like conditional probabilities, A/B testing, the bias-variance tradeoff, and more.
Automatización con KNIME: domina la fusión y agregación de datos, los flujos de trabajo de bases de datos y la gestión avanzada de archivos.
Learn to use R to develop models to evaluate and analyze bonds as well as protect them from interest rate changes.