Practicing Statistics Interview Questions in Python
Prepare for your next statistics interview by reviewing concepts like conditional probabilities, A/B testing, the bias-variance tradeoff, and more.
Suivez de courtes vidéos animées par des instructeurs experts, puis mettez en pratique ce que vous avez appris avec des exercices interactifs dans votre navigateur.
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Prepare for your next statistics interview by reviewing concepts like conditional probabilities, A/B testing, the bias-variance tradeoff, and more.
Explore latent variables, such as personality, using exploratory and confirmatory factor analyses.
Learn to use the Bioconductor package limma for differential gene expression analysis.
Use survival analysis to work with time-to-event data and predict survival time.
Learn how to design, automate, and monitor scalable forecasting pipelines in Python.
Discover the power of discrete-event simulation in optimizing your business processes. Learn to develop digital twins using Pythons SimPy package.
Découvrez comment fonctionnent les modèles derrière Google Translate avec Keras.
Analyze time series graphs, use bipartite graphs, and gain the skills to tackle advanced problems in network analytics.
Specify and fit GARCH models to forecast time-varying volatility and value-at-risk.
Learn how to create and assess measurement models used to confirm the structure of a scale or questionnaire.
In this course, youll prepare for the most frequently covered statistical topics from distributions to hypothesis testing, regression models, and much more.
Learn to process sensitive information with privacy-preserving techniques.
Learn how to leverage Bayesian estimation methods to make better inferences about linear regression models.
In this course, youll learn how to implement more advanced Bayesian models using RJAGS.
Learn to analyze and model customer choice data in R.
Learn how to tune your models hyperparameters to get the best predictive results.
Learn how to write scalable code for working with big data in R using the bigmemory and iotools packages.