Feature Engineering for Machine Learning in Python
Create new features to improve the performance of your Machine Learning models.
Assista a vídeos curtos apresentados por instrutores especializados e depois pratique o que aprendeu com exercícios interativos em seu navegador.
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados serão armazenados nos EUA.Create new features to improve the performance of your Machine Learning models.
Com base no seu conhecimento básico do Power Query in Excel, este curso intermediário leva você ao próximo nível de domínio da transformação de dados
Adquira as habilidades essenciais usando Scikit-learn, SHAP e LIME para testar e criar sistemas de IA transparentes, confiáveis e responsáveis.
Neste curso, você usará o T-SQL, a variante do SQL usada no SQL Server da Microsoft para análise de dados.
Reshape DataFrames from a wide to long format, stack and unstack rows and columns, and wrangle multi-index DataFrames.
Neste curso de quatro horas, você aprenderá os fundamentos da análise de dados de séries temporais em Python.
Learn key object-oriented programming concepts, from basic classes and objects to advanced topics like inheritance and polymorphism.
Learn to perform linear and logistic regression with multiple explanatory variables.
Find tables, store and manage new tables and views, and write maintainable SQL code to answer business questions.
Master sampling to get more accurate statistics with less data.
Learn to build AI applications using Snowflake Cortexs built-in LLM functions for text analysis, generation, and multi-step workflows.
Understand the concept of reducing dimensionality in your data, and master the techniques to do so in Python.
This course is an introduction to linear algebra, one of the most important mathematical topics underpinning data science.
Learn the practical uses of A/B testing in Python to run and analyze experiments. Master p-values, sanity checks, and analysis to guide business decisions.
Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models.
Learn to create your own Python packages to make your code easier to use and share with others.
Master GitHub Copilot to understand, write, and refine code with context, customization, and smart features.
In this course you will learn how to predict future events using linear regression, generalized additive models, random forests, and xgboost.
Learn how to build your own SQL reports and dashboards, plus hone your data exploration, cleaning, and validation skills.
Learn how to work with Claude using the Anthropic API to solve real-world tasks and build AI-powered applications.
Learn the basics of model validation, validation techniques, and begin creating validated and high performing models.
Aprenda os fundamentos das redes neurais e como criar modelos de aprendizado profundo usando TensorFlow.
In this conceptual course (no coding required), you will learn about the four major NoSQL databases and popular engines.
Comece a desenvolver modelos de aprendizado profundo usando Keras.
Saiba como preparar dados de solicitação de crédito, aplicar ML e regras de negócios para reduzir riscos e garantir a lucratividade.
Learn techniques for automated hyperparameter tuning in Python, including Grid, Random, and Informed Search.
Shift to an MLOps mindset, enabling you to train, document, maintain, and scale your machine learning models to their fullest potential.
Learn to model and predict stock data values using linear models, decision trees, random forests, and neural networks.
Evaluate portfolio risk and returns, construct market-cap weighted equity portfolios and learn how to forecast and hedge market risk via scenario generation.
Create multi-modal systems using OpenAIs text and audio models, including an end-to-end customer support chatbot!