Pular para o conteúdo principal
InícioR

Projeto

Predict Taxi Fares with Random Forests

Iniciante
Actualizado 09/2024
Use regression trees and random forests to find places where New York taxi drivers earn the most.
Iniciar projeto gratuitamente

Incluído comPremium or Teams

RData VisualizationMachine Learning45 minutos11 Tasks1,500 XP8,888

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do Projeto

Predict Taxi Fares with Random Forests

In this project, you get to work with the data from a large number of taxi journeys in New York from 2013. You will use regression trees and random forests to predict the value of fares and tips, based on location, date and time. While not required, it can help to have some extended experience with the packages dplyr, ggplot2 and randomForests.The dataset used in this project is a sample from the complete 2013 NYC taxi data, which was originally obtained and published by Chris Whong.

Predict Taxi Fares with Random Forests

Use regression trees and random forests to find places where New York taxi drivers earn the most.
Iniciar projeto gratuitamente
  • 1

    49999 New York taxi trips

  • 2

    Cleaning the taxi data

  • 3

    Zooming in on Manhattan

  • 4

    Where does the journey begin?

  • 5

    Predicting taxi fares using a tree

  • 6

    It's time. More predictors.

  • 7

    One more tree!

  • 8

    One tree is not enough

  • 9

    Plotting the predicted fare

  • 10

    Plotting the actual fare

  • 11

    Where do people spend the most?

Junte-se a mais 16 milhões de alunos e comece Predict Taxi Fares with Random Forests hoje!

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.