Skip to content
Setting Up
%pip install anthropic -q
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
import os
anthropic_api_key = os.environ["ANTHROPIC_API_KEY"]
anthropic = Anthropic(
api_key= anthropic_api_key,
)
HUMAN_PROMPT , AI_PROMPT
Simple Completions Function
completion = anthropic.completions.create(
model="claude-2.1",
max_tokens_to_sample=350,
prompt=f"{HUMAN_PROMPT} How do I learn Python in a week?{AI_PROMPT}",
)
print(completion.completion)
Async Completions Function
from anthropic import AsyncAnthropic
anthropic = AsyncAnthropic()
async def main():
completion = await anthropic.completions.create(
model="claude-2.1",
max_tokens_to_sample=300,
prompt=f"{HUMAN_PROMPT}How many moons does Jupiter have?{AI_PROMPT}",
)
print(completion.completion)
await main()
Simple LLM Streaming
anthropic = Anthropic()
stream = anthropic.completions.create(
prompt=f"{HUMAN_PROMPT}Could you please write a Python code to train a simple classification model?{AI_PROMPT}",
max_tokens_to_sample=350,
model="claude-2.1",
stream=True,
)
for completion in stream:
print(completion.completion, end="", flush=True)
Async LLM Streaming
anthropic = AsyncAnthropic()
stream = await anthropic.completions.create(
prompt=f"{HUMAN_PROMPT}Please write a blog post on Neural Networks and use Markdown format. Kindly make sure that you proofread your work for any spelling, grammar, or punctuation errors.{AI_PROMPT}",
max_tokens_to_sample=350,
model="claude-2.1",
stream=True,
)
async for completion in stream:
print(completion.completion, end="", flush=True)