Skip to content
CAPTCHA DETECTION
  • AI Chat
  • Code
  • Report
  • 1. Import libraries

    import os
    import sys
    import subprocess
    import numpy as np 
    import pandas as pd
    import matplotlib.pyplot as plt
    # implement pip as a subprocess:
    subprocess.check_call([sys.executable, '-m', 'pip', 'install', 
    'opencv-python==4.5.3.56'])
    
    
    from pathlib import Path
    from collections import Counter
    from sklearn.model_selection import train_test_split
    import cv2
    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers
    print("Tensorflow version: ", tf.__version__)
    print("Numpy version: ", np.__version__)
    seed = 5647
    np.random.seed(seed)
    tf.random.set_seed(seed)

    2. Train dataset

    # Path to the data directory
    data_dir = Path("./data/train/")
    
    # Get list of all the images
    images = list(data_dir.glob("*.png"))
    print("Number of images found: ", len(images))
    
    
    # Let's take a look at some samples first. 
    # Always look at your data!
    sample_images = images[:4]
    
    _,ax = plt.subplots(2,2, figsize=(5,3))
    for i in range(4):
        img = cv2.imread(str(sample_images[i]))
        print("Shape of image: ", img.shape)
        ax[i//2, i%2].imshow(img)
        ax[i//2, i%2].axis('off')
    plt.show()
    # Path to the data directory
    data_dir = Path("./data/train/")
    
    # Get list of all the images
    images = list(data_dir.glob("*.png"))
    
    # Store all the characters in a set
    characters = set()
    
    # A list to store the length of each captcha
    captcha_length = []
    
    # Store image-label info
    dataset = []
    
    # Iterate over the dataset and store the
    # information needed
    for img_path in images:
        # 1. Get the label associated with each image
        label = img_path.name.split(".png")[0]
        # 2. Store the length of this cpatcha
        captcha_length.append(len(label))
        # 3. Store the image-label pair info
        dataset.append((str(img_path), label))
        
        # 4. Store the characters present
        for ch in label:
            characters.add(ch)
    
    # Sort the characters        
    characters = sorted(characters)
    
    # Convert the dataset info into a dataframe
    dataset = pd.DataFrame(dataset, columns=["img_path", "label"], index=None)
    
    # Shuffle the dataset
    dataset = dataset.sample(frac=1.).reset_index(drop=True)
    
    print("Number of unqiue charcaters in the whole dataset: ", len(characters))
    print("Maximum length of any captcha: ", max(Counter(captcha_length).keys()))
    print("Characters present: ", characters)
    print("Total number of samples in the dataset: ", len(dataset))
    dataset.head()

    3. Split train data in train and valid set

    # Split the dataset into training and validation sets
    training_data, validation_data = train_test_split(dataset, test_size=0.10, random_state=seed)
    
    training_data = training_data.reset_index(drop=True)
    validation_data = validation_data.reset_index(drop=True)
    
    print("Number of training samples: ", len(training_data))
    print("Number of validation samples: ", len(validation_data))
    
    
    
    # Map text to numeric labels 
    char_to_labels = {char:idx for idx, char in enumerate(characters)}
    
    # Map numeric labels to text
    labels_to_char = {val:key for key, val in char_to_labels.items()}
    
    
    
    # Sanity check for corrupted images
    def is_valid_captcha(captcha):
        for ch in captcha:
            if not ch in characters:
                return False
        return True
    
    
    
    # Store arrays in memory as it's not a muvh big dataset 
    def generate_arrays(df, resize=True, img_height=50, img_width=200):
        """Generates image array and labels array from a dataframe.
        
        Args:
            df: dataframe from which we want to read the data
            resize (bool)    : whether to resize images or not
            img_weidth (int): width of the resized images
            img_height (int): height of the resized images
            
        Returns:
            images (ndarray): grayscale images
            labels (ndarray): corresponding encoded labels
        """
        
        num_items = len(df)
        images = np.zeros((num_items, img_height, img_width), dtype=np.float32)
        labels = [0]*num_items
        
        for i in range(num_items):
            img = cv2.imread(df["img_path"][i])
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            
            if resize: 
                img = cv2.resize(img, (img_width, img_height))
            
            img = (img/255.).astype(np.float32)
            label = df["label"][i]
            
            # Add only if it is a valid captcha
            if is_valid_captcha(label):
                images[i, :, :] = img
                labels[i] = label
        
        return images, np.array(labels)
    
    
    
    # Build training data
    training_data, training_labels = generate_arrays(df=training_data)
    print("Number of training images: ", training_data.shape)
    print("Number of training labels: ", training_labels.shape)
    
    
    # Build validation data
    validation_data, validation_labels = generate_arrays(df=validation_data)
    print("Number of validation images: ", validation_data.shape)
    print("Number of validation labels: ", validation_labels.shape)
    class DataGenerator(keras.utils.Sequence):
        """Generates batches from a given dataset.
        
        Args:
            data: training or validation data
            labels: corresponding labels
            char_map: dictionary mapping char to labels
            batch_size: size of a single batch
            img_width: width of the resized
            img_height: height of the resized
            downsample_factor: by what factor did the CNN downsample the images
            max_length: maximum length of any captcha
            shuffle: whether to shuffle data or not after each epoch
        Returns:
            batch_inputs: a dictionary containing batch inputs 
            batch_labels: a batch of corresponding labels 
        """
        
        def __init__(self,
                     data,
                     labels,
                     char_map,
                     batch_size=16,
                     img_width=200,
                     img_height=50,
                     downsample_factor=4,
                     max_length=5,
                     shuffle=True
                    ):
            self.data = data
            self.labels = labels
            self.char_map = char_map
            self.batch_size = batch_size
            self.img_width = img_width
            self.img_height = img_height
            self.downsample_factor = downsample_factor
            self.max_length = max_length
            self.shuffle = shuffle
            self.indices = np.arange(len(data))    
            self.on_epoch_end()
            
        def __len__(self):
            return int(np.ceil(len(self.data) / self.batch_size))
        
        def __getitem__(self, idx):
            # 1. Get the next batch indices
            curr_batch_idx = self.indices[idx*self.batch_size:(idx+1)*self.batch_size]
            
            # 2. This isn't necessary but it can help us save some memory
            # as not all batches the last batch may not have elements
            # equal to the batch_size 
            batch_len = len(curr_batch_idx)
            
            # 3. Instantiate batch arrays
            batch_images = np.ones((batch_len, self.img_width, self.img_height, 1),
                                   dtype=np.float32)
            batch_labels = np.ones((batch_len, self.max_length), dtype=np.float32)
            input_length = np.ones((batch_len, 1), dtype=np.int64) * \
                                    (self.img_width // self.downsample_factor - 2)
            label_length = np.zeros((batch_len, 1), dtype=np.int64)
            
            
            for j, idx in enumerate(curr_batch_idx):
                # 1. Get the image and transpose it
                img = self.data[idx].T
                # 2. Add extra dimenison
                img = np.expand_dims(img, axis=-1)
                # 3. Get the correpsonding label
                text = self.labels[idx]
                # 4. Include the pair only if the captcha is valid
                if is_valid_captcha(text):
                    label = [self.char_map[ch] for ch in text]
                    batch_images[j] = img
                    batch_labels[j] = label
                    label_length[j] = len(text)
            
            batch_inputs = {
                    'input_data': batch_images,
                    'input_label': batch_labels,
                    'input_length': input_length,
                    'label_length': label_length,
                    }
            return batch_inputs, np.zeros(batch_len).astype(np.float32)
            
        
        def on_epoch_end(self):
            if self.shuffle:
                np.random.shuffle(self.indices)
    # Batch size for training and validation
    batch_size = 16
    
    # Desired image dimensions
    img_width=200
    img_height=50 
    
    # Factor  by which the image is going to be downsampled
    # by the convolutional blocks
    downsample_factor=4
    
    # Maximum length of any captcha in the data
    max_length=5
    
    # Get a generator object for the training data
    train_data_generator = DataGenerator(data=training_data,
                                         labels=training_labels,
                                         char_map=char_to_labels,
                                         batch_size=batch_size,
                                         img_width=img_width,
                                         img_height=img_height,
                                         downsample_factor=downsample_factor,
                                         max_length=max_length,
                                         shuffle=True
                                        )
    
    # Get a generator object for the validation data 
    valid_data_generator = DataGenerator(data=validation_data,
                                         labels=validation_labels,
                                         char_map=char_to_labels,
                                         batch_size=batch_size,
                                         img_width=img_width,
                                         img_height=img_height,
                                         downsample_factor=downsample_factor,
                                         max_length=max_length,
                                         shuffle=False
                                        )

    4. Create model

    class CTCLayer(layers.Layer):
        def __init__(self, name=None):
            super().__init__(name=name)
            self.loss_fn = keras.backend.ctc_batch_cost
    
        def call(self, y_true, y_pred, input_length, label_length):
            # Compute the training-time loss value and add it
            # to the layer using `self.add_loss()`.
            loss = self.loss_fn(y_true, y_pred, input_length, label_length)
            self.add_loss(loss)
            
            # On test time, just return the computed loss
            return loss
    
    
    
    def build_model():
        # Inputs to the model
        input_img = layers.Input(shape=(img_width, img_height, 1),
                                name='input_data',
                                dtype='float32')
        labels = layers.Input(name='input_label', shape=[max_length], dtype='float32')
        input_length = layers.Input(name='input_length', shape=[1], dtype='int64')
        label_length = layers.Input(name='label_length', shape=[1], dtype='int64')
        
        # First conv block
        x = layers.Conv2D(32,
                   (3,3),
                   activation='relu',
                   kernel_initializer='he_normal',
                   padding='same',
                   name='Conv1')(input_img)
        x = layers.MaxPooling2D((2,2), name='pool1')(x)
        
        # Second conv block
        x = layers.Conv2D(64,
                   (3,3),
                   activation='relu',
                   kernel_initializer='he_normal',
                   padding='same',
                   name='Conv2')(x)
        x = layers.MaxPooling2D((2,2), name='pool2')(x)
        
        # We have used two max pool with pool size and strides of 2.
        # Hence, downsampled feature maps are 4x smaller. The number of
        # filters in the last layer is 64. Reshape accordingly before
        # passing it to RNNs
        new_shape = ((img_width // 4), (img_height // 4)*64)
        x = layers.Reshape(target_shape=new_shape, name='reshape')(x)
        x = layers.Dense(64, activation='relu', name='dense1')(x)
        x = layers.Dropout(0.2)(x)
        
        # RNNs
        x = layers.Bidirectional(layers.LSTM(128,return_sequences=True,dropout=0.2))(x)
        x = layers.Bidirectional(layers.LSTM(64,return_sequences=True,dropout=0.25))(x)
        
        # Predictions
        x = layers.Dense(len(characters)+1,
                  activation='softmax', 
                  name='dense2',
                  kernel_initializer='he_normal')(x)
        
        # Calculate CTC
        output = CTCLayer(name='ctc_loss')(labels, x, input_length, label_length)
        
        # Define the model
        model = keras.models.Model(inputs=[input_img,
                                           labels,
                                           input_length,
                                           label_length],
                                    outputs=output,
                                    name='ocr_model_v1')
        
        # Optimizer
        sgd = keras.optimizers.SGD(learning_rate=0.002,
                                   decay=1e-6,
                                   momentum=0.9,
                                   nesterov=True,
                                   clipnorm=5)
        
        # Compile the model and return 
        model.compile(optimizer=sgd)
        return model
    model = build_model()
    model.summary()

    5. Train model

    # Add early stopping
    es = keras.callbacks.EarlyStopping(monitor='val_loss',
                                       patience=5,
                                       restore_best_weights=True)
    
    # Train the model
    history = model.fit(train_data_generator,
                        validation_data=valid_data_generator,
                        epochs=50,
                        callbacks=[es])
    plt.plot(history.history['loss'],label='Train Loss')
    plt.plot(history.history['val_loss'],label='Valid Loss')
    plt.show()