Skip to content
deep learning practice
  • AI Chat
  • Code
  • Report
  • import torch
    import torch.nn as nn
    import torchvision
    # Start coding here... 
    class AlexNet(nn.Module):
      def __init__(self, num_classes=1000):
          super(AlexNet, self).__init__()
          self.conv1 = nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2)
          self.relu = nn.ReLU(inplace=True)
          self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
          self.conv2 = nn.Conv2d(64, 192, kernel_size=5, padding=2)
          self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1)
          self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
          self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
          self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
          self.fc1 = nn.Linear(256 * 6 * 6, 4096)
          self.fc2 = nn.Linear(4096, 4096)
          self.fc3 = nn.Linear(4096, num_classes)
    
      def forward(self, x):
          x = self.relu(self.conv1(x))
          x = self.maxpool(x)
          x = self.relu(self.conv2(x))
          x = self.maxpool(x)
          x = self.relu(self.conv3(x))
          x = self.relu(self.conv4(x))
          x = self.relu(self.conv5(x))
          x = self.maxpool(x)
          x = self.avgpool(x)
          x = x.view(x.size(0), 256 * 6 * 6)
          x = self.relu(self.fc1(x))
          x = self.relu(self.fc2(x))
          return self.fc3(x)

    Net class create

    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            
            # Instantiate two convolutional layers
            self.conv1 = nn.Conv2d(in_channels=1, out_channels=5, kernel_size=3, padding=1)
            self.conv2 = nn.Conv2d(in_channels=5, out_channels=10, kernel_size=3, padding=1)
            
            # Instantiate the ReLU nonlinearity
            self.relu = nn.ReLU(inplace=True)
            
            # Instantiate a max pooling layer
            self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
            
            # Instantiate a fully connected layer
            self.fc = nn.Linear(49 * 10, 10)
            
        def forward(self, x):
            # Apply conv followed by relu, then in next line pool
            x = self.relu(self.conv1(x))
            x = self.pool(x)
            
            # Apply conv followed by relu, then in next line pool
            x = self.relu(self.conv2(x))
            x = self.pool(x)
            
            # Prepare the image for the fully connected layer
            x = x.view(-1, 7 * 7 * 10)
            
            # Apply the fully connected layer and return the result
            return self.fc(x)

    Training CNN

    import torchvision.transforms as transforms
    from torchvision.datasets import MNIST
    
    # Transform the data to torch tensors and normalize it
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307), (0.3081))
    ])
    
    # Preparing the training and test set
    trainset = torchvision.datasets.MNIST('mnist', train=True, transform=transform)
    testset = torchvision.datasets.MNIST('mnist', train=True, transform=transform)
    
    # Prepare loader
    train_loader = torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=True, num_workers=0)
    test_loader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, num_workers=0)
    import torch.optim as optim
    
    net = Net()
    optimizer = optim.Adam(net.parameters(), lr=3e-4)
    criterion = nn.CrossEntropyLoss()
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        
        # Compute the forward pass
        outputs = net(inputs)
        
        # Compute the loss function
        loss = criterion(outputs, labels)
        
        # Compute the gradients
        loss.backward()
        
        # Update the weights
        optimizer.step()

    Make predictions

    net.eval()
    # Iterate over the data in the test_loader
    for i, data in enumerate(test_loader):
        # Get the image and label from data
        image, label = data
        
        # Make a forward pass in the net with your image
        output = net(image)
        
        # Argmax the results of the net
        _, predicted = torch.max(output.data, 1)
        
        if predicted == label:
            print("Yipes, your net made the right prediction " + str(predicted))
        else:
            print("Your net prediction was " + str(predicted) + ", but the correct label is: " + str(label))
            
        if i > 10:
            break