Skip to content
Exercise 3: Advanced models and libraries (Public)
  • AI Chat
  • Code
  • Report
  • Advanced models and libraries

    The problem:

    Bob has launched a new mobile phone brand, aiming to compete with major industry players such as Apple and Samsung. However, determining the appropriate pricing for his mobile phones poses a challenge. In the highly competitive mobile phone market, making assumptions about pricing strategies can be risky. To address this issue, Bob has gathered sales data from various mobile phone manufacturers.

    He seeks to uncover a correlation between the characteristics of a mobile phone (e.g., RAM, internal memory, etc.) and its selling price. Unfortunately, Bob lacks expertise in Machine Learning and requires assistance to tackle this problem.

    The task at hand is not to predict the exact selling price of the mobile phones. Instead, the objective is to classify the mobile phones into different price ranges, which will indicate their relative price level. This classification approach will help Bob understand how the features of a mobile phone can influence its position in the market in terms of pricing.

    The dataset contains various features related to mobile phones, such as battery_power, blue (Bluetooth), clock_speed, dual_sim, fc (front camera megapixels), four_g, int_memory (internal memory in Gigabytes), m_dep (mobile depth in cm), mobile_wt (mobile weight in grams), n_cores (number of cores of processor), pc (primary camera megapixels), px_height (pixel resolution height), px_width (pixel resolution width), ram (random access memory in Megabytes), sc_h (screen height in cm), sc_w (screen width in cm), talk_time (longest time that a single battery charge will last when you are), three_g, touch_screen, wifi, and price_range indicating the price category of the mobile.

    Here are a few points to think about:

    Handling missing data: Examine the dataset for any missing values.

    Outlier management: Reflect on your strategy for dealing with outliers identified within the dataset. Would eliminating them be appropriate, and if so, what rationale supports this decision?

    Price range distribution: Analyze how mobile phone price ranges are distributed within the dataset. What does this distribution tell you about the dataset's composition?

    Feature correlation with price range: Explore how features such as RAM, battery power, pixel height, and pixel width are related to mobile phone price ranges. What does the correlation between these features and the price range suggest?

    Feature relationships exploration: Examine the relationships between certain features (e.g., the presence of 4G and 3G, dual SIM functionality, and battery power). Are there any associations?

    Innovative feature creation: Think about the creation of new features, such as a total talk time per battery power or a weight-to-size ratio, that could enhance the prediction of mobile phone price ranges. How might these new features improve predictive accuracy?

    # Load necessary libraries
    library(caret)
    library(readr)
    library(tidyverse)
    
    # read csv file via readr library
    df <- read_csv("train.csv")
    
    #check the data types
    str(df)
    
    #check summary for the basic statistics
    summary(df)
    
    #example fo bar plot
    ggplot(df, aes(blue)) +
      geom_bar()
    
    install.packages("corrr")
    library(corrr)
    
    install.packages("ggcorrplot")
    library(ggcorrplot)
    
    # Step 1 scale the data frame
    
    data_scale <- scale(df)
    
    # Step 2 make the correlation matrix 
    
    corr_matrix <- cor(data_scale)
    
    # Step 3 plot the correlation matrix 
    
    ggcorrplot(corr_matrix, type= "lower")
    
    
    
    # Exploratory Data Analysis after Correlation Matrix
    
    #when scatter is not a good option
    ggplot(df, aes(x=ram, y=price_range)) +
      geom_point()
    
    #change to factor
    df$price_range <- as.factor(df$price_range)
    str(df)
    
    #when boxplot is a better option
    ggplot(df, aes(x=ram, y=price_range, color=price_range)) +
      geom_boxplot()
      
    #color for different price ranges
    ggplot(df, aes(x=battery_power, y=price_range, color=price_range)) +
      geom_boxplot()
    
    
    #two bar plot one over the other
    ggplot(df, aes(fc)) + 
      geom_bar(fill="red", alpha = 0.5) + 
      geom_bar(aes(pc), fill="blue", alpha = 0.4) +
      labs(title = "FC vs PC graph")
    
    #price range back to numeric
    df$price_range <- as.numeric(df$price_range)
    
    #density plots
    ggplot(df, aes(x=ram, y= price_range)) +
      geom_density_2d() +
      ylim(0,5) +
      xlim(-100, 4500)
    
    ggplot(df, aes(x=battery_power, y= price_range)) +
      geom_density_2d() +
      ylim(0,5) +
      xlim(0, 2500)
    
    
    # KNN 
    #caret library
    library(caret)
    #str(df)
    df$price_range <- as.factor(df$price_range)
    
    set.seed(123) # for reproduction
    ################################################################################
    # Split the dataset with the caret library
    
    myIndex <- createDataPartition(df$price_range, p=0.8, list=FALSE)
    trainSet <- df[myIndex, ]
    testSet <- df[-myIndex, ]
    ################################################################################
    
    
    set.seed(123) # for reproduction
    ################################################################################
    trControl <- trainControl(method = "cv", number = 10) # first parameter
    
    metric <- "Accuracy" # second parameter
    
    tuneGrid <- expand.grid(.k=seq(2,20, by=2)) # third parameter
    #tuneGrid <- expand.grid(.k=c(2:20))
    
    
    fit.knn <- train(price_range ~., data = trainSet, method = "knn",
                     trControl = trControl, metric = metric, tuneGrid = tuneGrid)
    ################################################################################
    
    print(fit.knn)
    
    plot(fit.knn)
    
    ################################################################################
    # Making predictions and confustion matrix 
    
    predictions <- predict(fit.knn, newdata = testSet)
    
    confusionMatrix(predictions, testSet$price_range)
    ################################################################################
    
    
    

    Naive Bayes

    library(caret)
    library(readr)
    library(tidyverse)
    library(klaR)
    
    df_new <- read_csv("train.csv")
    
    df_new$price_range <- as.factor(df_new$price_range)
    
    set.seed(123) # for reproduction
    
    
    
      myIndex <- createDataPartition(df_new$price_range, p=0.8, list=FALSE)
      trainSet2 <- df_new[myIndex, ]
      testSet2 <- df_new[-myIndex, ]
    
      set.seed(123) # for reproduction again
    
      trControl <- trainControl(method = "cv", number = 10) # first param
    
    
    suppressWarnings({ # handling warnings 
    	
      fit.nb <- train(price_range ~., data = trainSet2, method = "nb",
                       trControl = trControl, preProcess="scale")
    })# closing for handling warnings 
    
      print(fit.nb)
    
      plot(fit.nb)
    
    
    suppressWarnings({ # handling warnings 
    	
      predictions2 <- predict(fit.nb, newdata = testSet2)
    	
    }) # closing for handling warnings 
      confusionMatrix(predictions2, testSet2$price_range)
    	
    

    EXTRA: Support Vector Machine

    # Load necessary libraries
    # kernlab is used for support vector machines
    install.packages("kernlab")
    library(caret) # caret is used for creating predictive models
    library(readr) # readr is used for reading CSV files
    library(tidyverse) # tidyverse is a collection of R packages for data science
    library(kernlab) # kernlab is used for kernel-based machine learning methods
    
    # Load and prepare the dataset
    dataset <- read_csv("train.csv") # Read the dataset from a CSV file
    dataset$price_range <- as.factor(dataset$price_range) # Convert price_range to a factor for classification
    
    # Set a seed for reproducibility
    set.seed(123)
    
    # Split the dataset into training and testing sets
    validationIndex <- createDataPartition(dataset$price_range, p=0.8, list=FALSE) # 80% training, 20% testing
    train <- dataset[validationIndex,] # Training set
    test <- dataset[-validationIndex,] # Testing set
    
    # Setup training control
    trainControl <- trainControl(method="cv", number=10) # 10-fold cross-validation
    
    # Metric to evaluate the models
    metric <- "Accuracy" # Use accuracy as the performance metric
    
    # Define a tuning grid for the SVM model
    # Here, we're using an RBF kernel, so we need to tune the cost parameter (C) and the sigma parameter
    tuneGrid <- expand.grid(C=c(0.01, 0.1, 1, 10, 100), sigma=c(0.001, 0.01, 0.1, 1)) # Parameter grid
    
    # Train the SVM model
    suppressWarnings({ # handling warnings 
    fit.svm <- train(price_range~., data=train, method="svmRadial", # Use radial basis function kernel
                     metric=metric, trControl=trainControl, tuneGrid=tuneGrid) # Train the model
    })# closing for handling warnings 
    
    # Print the model summary
    print(fit.svm) # Print the model's details
    
    # Print the best tuning parameters
    print(fit.svm$bestTune) # Print the best tuning parameters found
    
    suppressWarnings({ # handling warnings 
    	predictions3 <- predict(fit.svm, newdata = test)
    
      	confusionMatrix(predictions3, test$price_range)
    })# closing for handling warnings