Saltar al contenido principal
InicioPython

Curso

Distributed AI Model Training in Python

Avanzado
Actualizado 4/2025
Learn how to reduce training times for large language models with Accelerator and Trainer for distributed training
Comienza el curso gratis

Incluido conPremium or Teams

PythonArtificial Intelligence4 horas13 vídeos45 Ejercicios3,850 XPCertificado de logros

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Distributed training is an essential skill in large-scale machine learning, helping you to reduce the time required to train large language models with trillions of parameters. In this course, you will explore the tools, techniques, and strategies essential for efficient distributed training using PyTorch, Accelerator, and Trainer.

Preparing Data for Distributed Training

You'll begin by preparing data for distributed training by splitting datasets across multiple devices and deploying model copies to each device. You'll gain hands-on experience in preprocessing data for distributed environments, including images, audio, and text.

Exploring Efficiency Techniques

Once your data is ready, you'll explore ways to improve efficiency in training and optimizer use across multiple interfaces. You'll see how to address these challenges by improving memory usage, device communication, and computational efficiency with techniques like gradient accumulation, gradient checkpointing, local stochastic gradient descent, and mixed precision training. You'll understand the tradeoffs between different optimizers to help you decrease your model's memory footprint. By the end of this course, you'll be equipped with the knowledge and tools to build distributed AI-powered services.

Prerrequisitos

Intermediate Deep Learning with PyTorchWorking with Hugging Face
1

Data Preparation with Accelerator

Iniciar capítulo
2

Distributed Training with Accelerator and Trainer

Iniciar capítulo
3

Improving Training Efficiency

Iniciar capítulo
4

Training with Efficient Optimizers

Iniciar capítulo
Distributed AI Model Training in Python
Curso
Completo

Obtener certificado de logros

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 16 millones de estudiantes y empezar Distributed AI Model Training in Python hoy

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.