Curso
Distributed AI Model Training in Python
Avanzado
Actualizado 4/2025Comienza el curso gratis
Incluido conPremium or Teams
PythonArtificial Intelligence4 horas13 vídeos45 Ejercicios3,850 XPCertificado de logros
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Preparing Data for Distributed Training
You'll begin by preparing data for distributed training by splitting datasets across multiple devices and deploying model copies to each device. You'll gain hands-on experience in preprocessing data for distributed environments, including images, audio, and text.Exploring Efficiency Techniques
Once your data is ready, you'll explore ways to improve efficiency in training and optimizer use across multiple interfaces. You'll see how to address these challenges by improving memory usage, device communication, and computational efficiency with techniques like gradient accumulation, gradient checkpointing, local stochastic gradient descent, and mixed precision training. You'll understand the tradeoffs between different optimizers to help you decrease your model's memory footprint. By the end of this course, you'll be equipped with the knowledge and tools to build distributed AI-powered services.Prerrequisitos
Intermediate Deep Learning with PyTorchWorking with Hugging Face1
Data Preparation with Accelerator
2
Distributed Training with Accelerator and Trainer
3
Improving Training Efficiency
4
Training with Efficient Optimizers
Distributed AI Model Training in Python
Curso Completo
Obtener certificado de logros
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 16 millones de estudiantes y empezar Distributed AI Model Training in Python hoy
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.