Saltar al contenido principal
InicioBlogPython

Python vs. R para ciencia de datos: ¿cuál deberías aprender?

Esta guía te ayudará a resolver una de las dudas más frecuentes de quienes desean iniciarse en ciencia de datos, y a elegir entre R y Python.
Actualizado feb 2024  · 10 min leer

cursos de ciencia de datos

Lee la versión en español 🇪🇸 de este artículo.

Si estás leyendo este artículo, es probable que estés iniciando tu andadura en ciencia de datos. Probablemente ya sabrás que aprender a programar es un hito fundamental para todo aspirante a profesional de los datos. Además, puede que ya hayas oído hablar del debate Python vs. R, y puede que necesites ayuda para decidir cuál aprender. Si te encuentras en esta situación, no te asustes: la mayoría de los profesionales de los datos estuvieron en tu misma situación alguna vez.

Python y R son los dos lenguajes de programación más populares para la ciencia de datos. Ambos lenguajes son muy adecuados para cualquier tarea de ciencia de datos que se te ocurra. El debate Python vs. R puede hacerte creer que tienes que elegir entre Python o R. 

Aunque esto puede ser cierto para los recién llegados a la disciplina, a largo plazo, es probable que necesites aprender ambas cosas. En lugar de ver los dos lenguajes como mutuamente excluyentes, deberías verlos como herramientas complementarias que puedes utilizar juntas en función de tu caso de uso específico. 

¿Qué hace que R y Python sean los candidatos perfectos para la ciencia de datos? En este artículo trataremos sobre para qué se utilizan Python y R, las principales diferencias entre R y Python, y proporcionaremos algunos factores a tener en cuenta para elegir el lenguaje adecuado a tus necesidades.

Ahora que ya sabemos que Python y R son dos opciones buenas y populares, hay algunos factores que pueden influir en tu decisión.

¿Por qué elegir Python?

Python es un lenguaje de programación de propósito general y código abierto que se utiliza en diversos ámbitos del software, como la ciencia de datos, el desarrollo web y los juegos. 

Lanzado en 1991, Python es uno de los lenguajes de programación más populares del mundo, ocupando la primera posición en varios índices de popularidad de lenguajes de programación, como el Índice TIOBE y el Índice PYPL

Una de las razones de la popularidad mundial de Python es su comunidad de usuarios. Python está respaldado por una amplia comunidad de usuarios y desarrolladores que garantizan el crecimiento y la mejora sin problemas del lenguaje, así como la publicación continua de nuevas bibliotecas diseñadas para todo tipo de propósitos. 

Python es un lenguaje fácil de leer y escribir debido a su gran similitud con el lenguaje humano. De hecho, la alta legibilidad e interpretabilidad son características básicas del diseño de Python. Por estas razones, Python se cita a menudo como lenguaje de programación de referencia para los recién llegados sin experiencia en programación. 

Con el tiempo, Python ha ido ganando popularidad en el campo de la ciencia de datos gracias a su sencillez y a las infinitas posibilidades que ofrecen los cientos de bibliotecas y paquetes especializados que dan soporte a cualquier tipo de tarea de ciencia de datos, como la visualización de datos, el machine learning y el aprendizaje profundo.

¿Por qué elegir R?

R es un lenguaje de programación de código abierto creado específicamente para el cálculo estadístico y los gráficos. 

Desde su primer lanzamiento en 1992, R ha sido ampliamente adoptado en la investigación científica y el mundo académico. Hoy en día, sigue siendo una de las herramientas analíticas más utilizadas tanto en el análisis tradicional de datos como en el campo de la analítica empresarial, que evoluciona rápidamente. Ocupa la 11.ª y 7.ª posición en el Índice TIOBE y en el Índice PYPL, respectivamente.

Diseñado pensando en los estadísticos, con R puedes utilizar funciones complejas con unas pocas líneas de código. Hay todo tipo de pruebas y modelos estadísticos disponibles y fáciles de utilizar, como el modelado lineal, el modelado no lineal, las clasificaciones y la agrupación.

Las amplias posibilidades que ofrece R se deben sobre todo a su enorme comunidad. Ha desarrollado una de las colecciones más ricas de paquetes relacionados con la ciencia de datos. Todos ellos están disponibles a través de la Comprehensive R Archive Network(CRAN).

Otra característica que hace que R sea especialmente destacable es la capacidad de generar informes de calidad con soporte para la visualización de datos y sus marcos disponibles para crear aplicaciones web interactivas. En este sentido, R está ampliamente considerado como la mejor herramienta para generar gráficos y visualizaciones atractivos.

R vs. Python: Diferencias clave

Ahora que estás un poco más familiarizado con Python y R, vamos a compararlos desde la perspectiva de la ciencia de datos para evaluar sus similitudes, puntos fuertes y puntos débiles. 

Objetivo

Si bien Python y R fueron creados con propósitos diferentes, Python como lenguaje de programación de propósito general y R para análisis estadístico, hoy en día ambos son adecuados para cualquier tarea de ciencia de datos. Sin embargo, Python se considera un lenguaje de programación más versátil que R, ya que también es muy popular en otros ámbitos del software, como el desarrollo de software, el desarrollo web y los juegos.

Tipo de usuarios

Como lenguaje de programación de uso general, Python es la elección estándar para los desarrolladores de software que se inician en la ciencia de datos. Además, el enfoque de Python en la productividad lo convierte en una herramienta más adecuada para crear aplicaciones complejas. 

En cambio, R se utiliza mucho en el mundo académico y en determinados sectores, como el financiero y el farmacéutico. Es el lenguaje perfecto para estadísticos e investigadores con conocimientos limitados de programación. 

Curva de aprendizaje

La intuitiva sintaxis de Python hace que se lo considere uno de los lenguajes de programación más parecidos al inglés. Esto lo convierte en un lenguaje muy bueno para los nuevos programadores, con una curva de aprendizaje suave y lineal. Aunque R está diseñado para ejecutar análisis de datos básicos fácilmente y en cuestión de minutos, las cosas se complican con tareas complejas, y a los usuarios de R les lleva más tiempo dominar el lenguaje. 

En general, Python se considera un buen lenguaje para programadores principiantes. R es más fácil de aprender cuando empiezas, pero la complejidad de las funcionalidades avanzadas hacen que sea más difícil desarrollar experiencia.

Popularidad

Aunque nuevos lenguajes de programación, como Julia, están ganando impulso recientemente en la ciencia de datos, Python y R siguen siendo los reyes absolutos en esta disciplina. 

Sin embargo, en términos de popularidad, un concepto siempre muy controvertido, las diferencias son notables. Python ha superado sistemáticamente a R, especialmente en los últimos años. Python ocupa el primer lugar en varios índices de popularidad de lenguajes de programación. Esto se debe al uso generalizado de Python en múltiples ámbitos del software, incluida la ciencia de datos. En cambio, R se emplea sobre todo en la ciencia de datos, en el mundo académico y en determinados sectores. 

Bibliotecas comunes

Tanto Python como R cuentan con sólidos y amplios ecosistemas de paquetes y bibliotecas diseñados específicamente para la ciencia de datos. La mayoría de los paquetes de Python están alojados en el Índice de paquetes de Python (PyPi), mientras que los paquetes de R se almacenan normalmente en la Comprehensive R Archive Network (CRAN).

A continuación puedes encontrar una lista de algunas de las bibliotecas de ciencia de datos más populares en R y Python.

Paquetes R:

  • dplyr: biblioteca de manipulación de datos para R.
  • tidyr: un paquete excelente que te ayudará a tener tus datos limpios y ordenados. 
  • ggplot2: la biblioteca perfecta para la visualización de datos.
  • Shiny: la herramienta ideal para la creación de aplicaciones web interactivas directamente desde R.
  • Caret: una de las bibliotecas más importantes para machine learning en R. 

Paquetes de Python:

  • NumPy: proporciona una gran colección de funciones para la informática científica.
  • Pandas: perfecto para la manipulación de datos.
  • Matplotlib: la biblioteca estándar para la visualización de datos.
  • Scikit-learn: es una biblioteca en Python que proporciona muchos algoritmos de machine learning.
  • TensorFlow: marco ampliamente utilizado para el aprendizaje profundo.

Entornos de desarrollo integrados comunes

Un entorno de desarrollo integrado (Integrated Development Environment, IDE) permite a los programadores consolidar los distintos aspectos de la escritura de programas informáticos. Son potentes interfaces con capacidades integradas que permiten a los desarrolladores escribir código de forma más eficiente.

En Python, los IDE más populares en ciencia de datos son Jupyter Notebooks y su versión moderna, JupyterLab, así como Spyder.

En cuanto a R, el IDE más utilizado es RStudio. Su interfaz está organizada de forma que el usuario pueda ver gráficos, tablas de datos, código R y resultados, todo al mismo tiempo.

Python vs. R: comparativa

A continuación encontrarás una tabla con las diferencias entre R y Python:

 

R

Python

Objetivo

Muy popular en el mundo académico y la investigación, las finanzas y la ciencia de datos 

Adecuado para muchos ámbitos de la programación, como la ciencia de datos, el desarrollo web, el desarrollo de software y los juegos

Primera publicación

1993

1991

Tipo de lenguaje

Lenguaje de programación de uso general

Lenguaje de programación de uso general

¿Código abierto?

Ecosistema

Casi 19 000 paquetes disponibles en la Comprehensive R Archive Network (CRAN

Más de 300 000 paquetes disponibles en el Índice de paquetes de Python (PyPi)

Facilidad de aprendizaje

R es más fácil de aprender cuando empiezas, pero se vuelve más difícil cuando utilizas funcionalidades avanzadas.

Python es un lenguaje fácil de usar para principiantes, con una sintaxis similar a la inglesa. 

IDE

RStudio. Su interfaz está organizada de forma que el usuario pueda ver gráficos, tablas de datos, código R y resultados, todo al mismo tiempo.

Jupyter Notebooks y su versión moderna, JupyterLab, y Spyder.

Ventajas

  • Ampliamente considerada como la mejor herramienta para generar gráficos y visualizaciones atractivos. 
  • Tiene muchas funcionalidades para el análisis de datos. 
  • Excelente para el análisis estadístico.
  • Los lenguajes de programación de propósito general son útiles más allá del mero análisis de datos. 
  • Ha ganado popularidad por su legibilidad de código, velocidad y muchas funcionalidades. 
  • Tiene una gran facilidad de despliegue y reproducibilidad.

Desventajas

  • Más difícil de aprender para las personas sin experiencia en desarrollo de software.
  • Comunidad de usuarios limitada en comparación con Python
  • R se considera un lenguaje computacionalmente más lento que Python, sobre todo si el código está mal escrito.
  • Encontrar la biblioteca adecuada para tu tarea puede ser complicado, dado el elevado número de paquetes disponibles en CRAN
  • Bajo rendimiento con grandes cantidades de datos
  • Poca eficiencia de la memoria
  • Python no tiene tantas bibliotecas para la ciencia de datos como R. 
  • Python requiere pruebas rigurosas, ya que los errores aparecen en tiempo de ejecución. 
  • Las visualizaciones son más enrevesadas en Python que en R, y los resultados no son tan agradables a la vista ni tan informativos.

Tendencias

11.º en TIOBE y 7.º en PYPL (diciembre de 2022) 

1.º en TIOBE y 1.º en PYPL (diciembre de 2022) 

R vs. Python: ¿Qué lenguaje deberías aprender?

A pesar de sus puntos fuertes y débiles, lo cierto es que no existe un único lenguaje de programación que sea el mejor para todos los problemas que puedan surgir durante tu aventura por la ciencia de datos.

Además, siempre es importante evaluar el contexto. Antes de elegir, debes hacerte varias preguntas: ¿Tienes experiencia en programación? ¿Qué lenguaje de programación utilizan tus colegas? ¿Qué tipo de problemas intentas resolver? ¿Cuáles son tus áreas de interés dentro de la ciencia de datos? 

Una vez que hayas respondido a estas preguntas, puedes elegir una de las dos. En cualquier caso, que no cunda el pánico: tanto R como Python son opciones excelentes para la ciencia de datos. Por eso, en DataCamp hemos preparado un amplio catálogo de cursos y programas para ayudarte. Echa un vistazo a los siguientes recursos y ¡empieza hoy mismo!

Python vs. R para ciencia de datos: una infografía

La siguiente infografía "¿Cuándo debo usar Python vs. R?" es para cualquier persona interesada en saber cómo se comparan estos dos lenguajes de programación desde la perspectiva de la ciencia de datos y la analítica, incluidos sus puntos fuertes y aspectos a mejorar. Haz clic en la imagen de abajo para descargar la infografía y acceder a los enlaces incrustados.

Infografía Python versus R

Preguntas frecuentes sobre Python y R

¿Cuál es la principal diferencia entre Python y R?

Python es un lenguaje de programación de uso general, mientras que R es un lenguaje de programación estadística. Esto significa que Python es más versátil y puede utilizarse para una gama más amplia de tareas, como el desarrollo web, la manipulación de datos y el machine learning. R, por otra parte, se utiliza principalmente para el análisis estadístico y la visualización de datos.

¿Qué es más fácil de aprender, R o Python?

Tanto Python como R son relativamente fáciles de aprender, especialmente si ya tienes alguna experiencia en programación. La gente debatirá cuál es más fácil para los recién llegados; ambos tienen una sintaxis relativamente sencilla, aunque Python puede superarla. 

¿Qué lenguaje es más popular?

Python es actualmente más popular que R, especialmente entre los desarrolladores de software y los científicos de datos. Sin embargo, R sigue siendo una opción popular entre los estadísticos y los analistas de datos.

¿Qué lenguaje tiene un mejor ecosistema para el análisis de datos y el machine learning?

Tanto Python como R disponen de un gran número de bibliotecas y marcos para el análisis de datos y el machine learning. Python tiene bibliotecas populares como Pandas, NumPy y scikit-learn, mientras que R tiene paquetes como dplyr, tidyr y caret. En última instancia, la elección del lenguaje puede reducirse a la preferencia personal y a las necesidades específicas de tu proyecto.

¿Puedo utilizar Python y R juntos?

Sí, puedes utilizar Python y R juntos de varias formas. Por ejemplo, puedes utilizar Python para procesar y limpiar tus datos y luego utilizar R para visualizarlos y analizarlos. También puedes utilizar la biblioteca rpy2 para llamar a funciones de R desde Python o utilizar herramientas como los cuadernos Jupyter para mezclar código de ambos lenguajes en el mismo documento.

Temas

Cursos de R y Python

Certificación disponible

Course

Introducción a R

4 hr
2.7M
Domina los fundamentos del análisis de datos en R, incluyendo vectores, listas y marcos de datos, y practica R con conjuntos de datos reales.
See DetailsRight Arrow
Start Course
Ver másRight Arrow
Relacionado

Las 23 mejores preguntas y respuestas de entrevistas sobre Python

Preguntas esenciales de una entrevista sobre Python con ejemplos para solicitantes de empleo, estudiantes de último curso y profesionales de los datos.
Abid Ali Awan's photo

Abid Ali Awan

22 min

Cómo aprender Python desde cero en 2024: Guía del experto

Descubre cómo aprender Python, sus aplicaciones y la demanda de conocimientos de Python. Comienza hoy tu andadura en Python ​con nuestra guía completa.
Matt Crabtree's photo

Matt Crabtree

19 min

Python 2 vs 3

Python 2 vs 3: Todo lo que necesitas saber

En este artículo, trataremos las principales diferencias entre Python 2 y 3, cuál es el mejor y por cuál deberías decantarte para comenzar tu andadura en la ciencia de datos.
Javier Canales Luna 's photo

Javier Canales Luna

6 min

Python snake

¿Para qué se utiliza Python? 7 usos reales de Python

¿Te has preguntado alguna vez para qué se utiliza Python en el mundo real? Echa un vistazo a 7 usos prácticos de este potente lenguaje de programación.
Elena Kosourova 's photo

Elena Kosourova

11 min

Configurar VSCode para Python: Guía completa

Experimenta una forma sencilla, divertida y productiva de desarrollar en Python conociendo VSCode y sus extensiones y funciones.
Abid Ali Awan's photo

Abid Ali Awan

16 min

Dos métodos sencillos para convertir un archivo Python en un archivo Exe

Aprende qué es un archivo ejecutable y por qué puede ser útil, mientras ves cómo convertir un script de Python en un ejecutable utilizando auto-py-to-exe.
Kurtis Pykes 's photo

Kurtis Pykes

6 min

See MoreSee More