Pular para o conteúdo principal

Python Data Visualization: Bokeh Cheat Sheet

A handy cheat sheet for interactive plotting and statistical charts with Bokeh.
13 de jul. de 2021  · 5 min de leitura

Bokeh distinguishes itself from other Python visualization libraries such as Matplotlib or Seaborn in the fact that it is an interactive visualization library that is ideal for anyone who would like to quickly and easily create interactive plots, dashboards, and data applications. 

Bokeh is also known for enabling high-performance visual presentation of large data sets in modern web browsers. 

For data scientists, Bokeh is the ideal tool to build statistical charts quickly and easily; But there are also other advantages, such as the various output options and the fact that you can embed your visualizations in applications. And let's not forget that the wide variety of visualization customization options makes this Python library an indispensable tool for your data science toolbox.

As you might know, DataCamp recently launched the Interactive Data Visualization with Bokeh course together with Bryan Van de Ven, Bokeh core contributor. 

Now, DataCamp has created a Bokeh cheat sheet for those who have already taken the course and that still want a handy one-page reference or for those who need an extra push to get started.

In short, you'll see that this cheat sheet not only presents you with the five steps that you can go through to make beautiful plots but will also introduce you to the basics of statistical charts. 

Python Bokeh Cheat Sheet

Have this cheat sheet at your fingertips

Download PDF

In no time, this Bokeh cheat sheet will make you familiar with how you can prepare your data, create a new plot, add renderers for your data with custom visualizations, output your plot and save or show it. And the creation of basic statistical charts will hold no secrets for you any longer. 

Boost your Python data visualizations now with the help of Bokeh! :)

PS. Check out our Interactive Data Visualization with Bokeh course or visit the Bokeh documentation website. Also, don't miss our Pandas cheat sheet or the Python cheat sheet for data science

Plotting With Bokeh

The Python interactive visualization library Bokeh enables high-performance visual presentation of large datasets in modern web browsers.

Bokeh's mid-level general-purpose bokeh. plotting interface is centered around two main components: data and glyphs.

The basic steps to creating plots with the bokeh. plotting interface are:

  1. Prepare some data (Python lists, NumPy arrays, Pandas DataFrames and other sequences of values)
  2. Create a new plot
  3. Add renderers for your data, with visual customizations
  4. Specify where to generate the output
  5. Show or save the results
>>> from bokeh.plotting import figure
>>> from bokeh.io import output_file, show
>>> x = [1, 2, 3, 4, 5] #Step 1
>>> y = [6, 7, 2, 4, 5]
>>> p = figure(title="simple line example", #Step 2
x_axis_label='x',
y_axis_label='y')
>>> p.line(x, y, legend="Temp.", line_width=2) #Step 3
>>> output_file("lines.html") #Step 4
>>> show(p) #Step 5

1. Data 

Under the hood, your data is converted to Column Data Sources. You can also do this manually:

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.OataFrame(np.array([[33.9,4,65, 'US'], [32.4, 4, 66, 'Asia'], [21.4, 4, 109, 'Europe']]),
                     columns= ['mpg', 'cyl',   'hp',   'origin'],
                      index=['Toyota', 'Fiat', 'Volvo'])


>>> from bokeh.models import ColumnOataSource
>>> cds_df = ColumnOataSource(df)

2. Plotting 

>>> from bokeh.plotting import figure
>>>p1= figure(plot_width=300, tools='pan,box_zoom')
>>> p2 = figure(plot_width=300, plot_height=300,
x_range=(0, 8), y_range=(0, 8))
>>> p3 = figure()

3. Renderers & Visual Customizations 

Glyphs 

Scatter Markers 
Bokeh Scatter Markers

>>> p1.circle(np.array([1,2,3]), np.array([3,2,1]), fill_color='white')
>>> p2.square(np.array([1.5,3.5,5.5]), [1,4,3],
color='blue', size=1)

Line Glyphs 

Bokeh Line Glyphs

>>> pl.line([1,2,3,4], [3,4,5,6], line_width=2)
>>> p2.multi_line(pd.DataFrame([[1,2,3],[5,6,7]]),
pd.DataFrame([[3,4,5],[3,2,1]]),
color="blue")

Customized Glyphs

Selection and Non-Selection Glyphs 

Selection Glyphs

>>> p = figure(tools='box_select')
>>> p. circle ('mpg', 'cyl', source=cds_df,
selection_color='red',
nonselection_alpha=0.1)

Hover Glyphs

Hover Glyphs

>>> from bokeh.models import HoverTool
>>>hover= HoverTool(tooltips=None, mode='vline')
>>> p3.add_tools(hover)

Color Mapping 

Bokeh Colormapping Glyphs

>>> from bokeh.models import CategoricalColorMapper
>>> color_mapper = CategoricalColorMapper(
             factors= ['US', 'Asia', 'Europe'],
             palette= ['blue', 'red', 'green'])
>>>  p3. circle ('mpg', 'cyl', source=cds_df,
            color=dict(field='origin',
                 transform=color_mapper), legend='Origin')

4. Output & Export 

Notebook

>>> from bokeh.io import output_notebook, show
>>> output_notebook()

HTML 

Standalone HTML 

>>> from bokeh.embed import file_html
>>> from bokeh.resources import CON
>>> html = file_html(p, CON, "my_plot")

>>> from  bokeh.io  import  output_file,  show
>>> output_file('my_bar_chart.html',  mode='cdn')

Components

>>> from bokeh.embed import components
>>> script, div= components(p)

PNG

>>> from bokeh.io import export_png
>>> export_png(p, filename="plot.png")

SVG 

>>> from bokeh.io import export_svgs
>>> p. output_backend = "svg"
>>> export_svgs(p,filename="plot.svg")

Legend Location 

Inside Plot Area 

>>> p.legend.location = 'bottom left'

Outside Plot Area 

>>> from bokeh.models import Legend
>>> r1 = p2.asterisk(np.array([1,2,3]), np.array([3,2,1])
>>> r2 = p2.line([1,2,3,4], [3,4,5,6])
>>> legend = Legend(items=[("One" ,[p1, r1]),("Two",[r2])], location=(0, -30))
>>> p.add_layout(legend, 'right')

Legend Background & Border 

>>> p.legend. border_line_color = "navy"
>>> p.legend.background_fill_color = "white"

Legend Orientation 

>>> p.legend.orientation = "horizontal"
>>> p.legend.orientation = "vertical"

Rows & Columns Layout

Rows

>>> from bokeh.layouts import row
>>>layout= row(p1,p2,p3)

Columns

>>> from bokeh.layouts import columns
>>>layout= column(p1,p2,p3)

Nesting Rows & Columns 

>>>layout= row(column(p1,p2), p3)

Grid Layout 

>>> from bokeh.layouts import gridplot
>>> rowl = [p1,p2]
>>> row2 = [p3]
>>> layout = gridplot([[p1, p2],[p3]])

Tabbed Layout 

>>> from bokeh.models.widgets import Panel, Tabs
>>> tab1 = Panel(child=p1, title="tab1")
>>> tab2 = Panel(child=p2, title="tab2")
>>> layout = Tabs(tabs=[tab1, tab2])

Linked Plots

Linked Axes 

Linked Axes
>>> p2.x_range = p1.x_range
>>> p2.y_range = p1.y_range

Linked Brushing 

>>> p4 = figure(plot_width = 100, tools='box_select,lasso_select')
>>> p4.circle('mpg', 'cyl' , source=cds_df)
>>> p5 = figure(plot_width = 200, tools='box_select,lasso_select')
>>> p5.circle('mpg', 'hp', source=cds df)
>>>layout= row(p4,p5)

5. Show or Save Your Plots  

>>> show(p1)
>>> show(layout)
>>> save(p1)

If you are interested in learning more, check out DataCamp’s Interactive Data Visualization with Bokeh course! 

Temas
Relacionado

cheat-sheet

Matplotlib Cheat Sheet: Plotting in Python

This Matplotlib cheat sheet introduces you to the basics that you need to plot your data with Python and includes code samples.
Karlijn Willems's photo

Karlijn Willems

6 min

cheat-sheet

Python Seaborn Cheat Sheet

This Python Seaborn cheat sheet with code samples guides you through the data visualization library that is based on Matplotlib.
Karlijn Willems's photo

Karlijn Willems

2 min

cheat-sheet

Python for Data Science - A Cheat Sheet for Beginners

This handy one-page reference presents the Python basics that you need to do data science
Karlijn Willems's photo

Karlijn Willems

4 min

cheat-sheet

Plotly Express Cheat Sheet

Plotly is one of the most widely used data visualization packages in Python. Learn more about it in this cheat sheet.
Richie Cotton's photo

Richie Cotton

0 min

tutorial

Data Visualization with Bokeh Tutorial: Getting Started

Learn the important basics and installation process of Bokeh
DataCamp Team's photo

DataCamp Team

7 min

tutorial

Python For Data Science - A Cheat Sheet For Beginners

This handy one-page reference presents the Python basics that you need to do data science
Karlijn Willems's photo

Karlijn Willems

7 min

See MoreSee More