This course provides a comprehensive introduction to working with base graphics in R.

Start Course for Free4 Hours15 Videos60 Exercises49,748 Learners

5250 XPor

By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.<p>This course provides a comprehensive introduction on how to plot data with R’s default graphics system, base graphics.</p><p>After an introduction to base graphics, we look at a number of R plotting examples, from simple graphs such as scatterplots to plotting correlation matrices. The course finishes with exercises in plot customization. This includes using R plot colors effectively and creating and saving complex plots in R.</p><p><strong>Base Graphics Background</strong><br>R supports four different graphics systems: base graphics, grid graphics, lattice graphics, and ggplot2. Base graphics is the default graphics system in R, the easiest of the four systems to learn to use, and provides a wide variety of useful tools, especially for exploratory graphics where we wish to learn what is in an unfamiliar dataset.</p>

- 1
### A quick introduction to base R graphics

**Free**This chapter gives a brief overview of some of the things you can do with base graphics in R. This graphics system is one of four available in R and it forms the basis for this course because it is both the easiest to learn and extremely useful both in preparing exploratory data visualizations to help you see what's in a dataset and in preparing explanatory data visualizations to help others see what we have found. - 2
### Different plot types

This chapter introduces several Base R supported plot types that are particularly useful for visualizing important features in a dataset. We start with simple tools like histograms and density plots for characterizing one variable at a time, move on to scatter plots and other useful tools for showing how two variables relate, and finally introduce some tools for visualizing more complex relationships in our dataset. - 3
### Adding details to plots

Most base R graphics functions support many optional arguments and parameters that allow us to customize our plots to get exactly what we want. In this chapter, we will learn how to modify point shapes and sizes, line types and widths, add points and lines to plots, add explanatory text and generate multiple plot arrays. - 4
### How much is too much?

As we have seen, base R graphics provides tremendous flexibility in creating plots with multiple lines, points of different shapes and sizes, and added text, along with arrays of multiple plots. If we attempt to add too many details to a plot or too many plots to an array, however, the result can become too complicated to be useful. This chapter focuses on how to manage this visual complexity so the results remain useful to ourselves and to others. - 5
### Advanced plot customization and beyond

This final chapter introduces a number of important topics, including the use of numerical plot details returned invisibly by functions like barplot() to enhance our plots, and saving plots to external files so they don't vanish when we end our current R session. This chapter also offers some guidelines for using color effectively in data visualizations, and it concludes with a brief introduction to the other three graphics systems in R.

Prerequisites

Introduction to RPhD in Electrical Engineering and Computer Science from M.I.T.

Ron has been actively involved in data analysis and predictive modeling in a variety of technical positions, both academic and commercial, including the DuPont Company, the Swiss Federal Institute of Technology (ETH Zurich), the Tampere University of Technology in Tampere, Finland, the Travelers Companies and DataRobot. He holds a PhD in Electrical Engineering and Computer Science from M.I.T. and has written or co-written five books, including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python (CRC Press, 2016, with Moncef Gabbouj). Ron is the author and maintainer of the GoodmanKruskal R package, and one of the authors of the datarobot R package.

“I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyds Banking Group

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics, USAA

or

By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.