Interactive Course

Introduction to Data Visualization with ggplot2

Learn to produce meaningful and beautiful data visualizations with ggplot2 by understanding the grammar of graphics.

  • 4 hours
  • 14 Videos
  • 52 Exercises
  • 1,612 Participants
  • 4,300 XP

Loved by learners at thousands of top companies:

intel-grey.svg
deloitte-grey.svg
dell-grey.svg
forrester-grey.svg
ea-grey.svg
axa-grey.svg

Course Description

The ability to produce meaningful and beautiful data visualizations is an essential part of your skill set as a data scientist. This course, the first R data visualization tutorial in the series, introduces you to the principles of good visualizations and the grammar of graphics plotting concepts implemented in the ggplot2 package. ggplot2 has become the go-to tool for flexible and professional plots in R. Here, we’ll examine the first three essential layers for making a plot - Data, Aesthetics and Geometries. By the end of the course you will be able to make complex exploratory plots.

  1. 1

    Introduction

    Free

    In this chapter we’ll get you into the right frame of mind for developing meaningful visualizations with R. You’ll understand that as a communications tool, visualizations require you to think about your audience first. You’ll also be introduced to the basics of ggplot2 - the 7 different grammatical elements (layers) and aesthetic mappings.

  2. Geometries

    A plot’s geometry dictates what visual elements will be used. In this chapter, we’ll familiarize you with the geometries used in the three most common plot types you’ll encounter - scatter plots, bar charts and line plots. We’ll look at a variety of different ways to construct these plots.

  3. Aesthetics

    Aesthetic mappings are the cornerstone of the grammar of graphics plotting concept. This is where the magic happens - converting continuous and categorical data into visual scales that provide access to a large amount of information in a very short time. In this chapter you’ll understand how to choose the best aesthetic mappings for your data.

  4. Themes

    In this chapter, we’ll explore how understanding the structure of your data makes data visualization much easier. Plus, it’s time to make our plots pretty. This is the last step in the data viz process. The Themes layer will enable you to make publication quality plots directly in R. In the next course we'll look at some extra layers to add more variables to your plots.

  1. 1

    Introduction

    Free

    In this chapter we’ll get you into the right frame of mind for developing meaningful visualizations with R. You’ll understand that as a communications tool, visualizations require you to think about your audience first. You’ll also be introduced to the basics of ggplot2 - the 7 different grammatical elements (layers) and aesthetic mappings.

  2. Aesthetics

    Aesthetic mappings are the cornerstone of the grammar of graphics plotting concept. This is where the magic happens - converting continuous and categorical data into visual scales that provide access to a large amount of information in a very short time. In this chapter you’ll understand how to choose the best aesthetic mappings for your data.

  3. Geometries

    A plot’s geometry dictates what visual elements will be used. In this chapter, we’ll familiarize you with the geometries used in the three most common plot types you’ll encounter - scatter plots, bar charts and line plots. We’ll look at a variety of different ways to construct these plots.

  4. Themes

    In this chapter, we’ll explore how understanding the structure of your data makes data visualization much easier. Plus, it’s time to make our plots pretty. This is the last step in the data viz process. The Themes layer will enable you to make publication quality plots directly in R. In the next course we'll look at some extra layers to add more variables to your plots.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Rick Scavetta
Rick Scavetta

Rick Scavetta is a co-founder of Scavetta Academy.

Rick Scavetta is a biologist, workshop trainer, freelance data scientist and cofounder of Scavetta Academy, a company dedicated to helping scientists better understand and visualize their data. Rick's practical, hands-on exposure to a wide variety of datasets has informed him of the many problems scientists face when trying to visualize their data.

See More
Collaborators
  • Sascha Mayr

    Sascha Mayr

  • Jonathan Ng

    Jonathan Ng

  • Shon Inouye

    Shon Inouye

Icon Icon Icon professional info