Skip to main content
HomePodcastsPodcast

Using AI to Improve Data Quality in Healthcare

In this episode, we speak with Nate Fox, CTO and Co-Founder at Ribbon Health, and Sunna Jo, resident data science at Ribbon Health on how AI is improving data quality in healthcare.
Updated Feb 2023

Photo of Nate Fox
Guest
Nate Fox

Nate Fox is the Co-Founder and CTO at Ribbon. Ribbon's mission is to build the infrastructure to transform billions of care decisions. 


Photo of Sunna Jo, MD
Guest
Sunna Jo, MD

Sunna Jo is a medical doctor and data scientist at Ribbon. 


Photo of Richie Cotton
Host
Richie Cotton

Richie helps organizations get from a vague sense of "hey we ought to get better at using data" to having realistic plans to become successful data-driven organizations. He's been a data scientist since before it was called data science, and has written several books and created many DataCamp courses on the subject.

Key Quotes

I leverage my clinical experience daily which is both amazing and motivating. Because of my clinical experience, I am able to provide an additional lens on the data from the perspective of a healthcare provider, and give my team the context for the data so they can interpret and translate the data in a way that makes sense. For example, for one of our provider performance products, we work really closely with medical codes.  These are designated codes that define certain diagnoses and procedures. My team is cleaning and building a model on these same codes that I used to bill for my own visits as a provider. Being able to recognize and understand the insights that we can get from these codes have just been a great reminder of the value of my experience.

Data engineering is a huge part of making this data usable. I think it requires a lot of creativity to think about "How can you scalably ingest thousands of schemas?". For example, address data can be formatted a number of different ways, we need to standardize that data across all the different scales that we see across different data sources. We built a tool that helps with onboarding new data sources by mapping all different fields to our own standard fields. Before, it would take us 20-30 minutes in Python to code up just one new data source, so imagine the mountain of work that’s created when you have hundreds of sources. Now, we have a simple UI that even starts to guess some initial mappings for you, reducing a 20-to-30-minute data mapping process per new data source to just 10-15 seconds, which makes a lot of our operations and our data adjustment processes a lot smoother and far more scalable.

Key Takeaways

1

Data Engineering is very valuable when it comes to the scalability of data cleaning. It’s essential to think creatively about how to solve data quality challenges so that your solutions work reliably at scale.

2

It's helpful to understand the context of the data, such as learning why the data was produced in the first place, who sits behind it, and what their intentions are. That context can change the entire process, starting with how you clean the data, analyze it, and how you consider anomalies and edge cases.

3

Having a strong and clear operating definition for what is considered good quality data can help you more effectively work with messy data, transform it into usable data, and draw meaningful insights from it.

Related

What is AI? A Quick-Start Guide For Beginners

Find out what artificial intelligence really is with examples, expert input, and all the tools you need to learn more.

Matt Crabtree

11 min

Promoting Responsible AI: Content Moderation in ChatGPT

Explore the ethical landscape of AI with a focus on content moderation in ChatGPT. Learn about OpenAI's Moderation API, real-world examples, and best practices for responsible AI development.
Kurtis Pykes 's photo

Kurtis Pykes

11 min

ChatGPT in Space: How AI Can Transform Deep Space Missions

Explore how tools like ChatGPT could revolutionize space travel by improving communication, data quality, and astronaut well-being. Learn about the challenges and solutions for AI in space.
James Chapman's photo

James Chapman

7 min

The Top 5 Vector Databases

A comprehensive guide to the best vector databases. Master high-dimensional data storage, decipher unstructured information, and leverage vector embeddings for AI applications.
Moez Ali's photo

Moez Ali

14 min

What is Similarity Learning? Definition, Use Cases & Methods

While traditional supervised learning focuses on predicting labels based on input data and unsupervised learning aims to find hidden structures within data, similarity learning is somewhat in between.
Abid Ali Awan's photo

Abid Ali Awan

9 min

Building Ethical Machines with Reid Blackman, Founder & CEO at Virtue Consultants

Reid and Richie discuss the dominant concerns in AI ethics, from biased AI and privacy violations to the challenges introduced by generative AI.
Richie Cotton's photo

Richie Cotton

57 min

See MoreSee More