Skip to main content

Unlocking Scalable ROI for Data Teams

Shane Murray, Field CTO at Monte Carlo, joins the show to discuss how data leaders can scale the ROI of their teams.
Feb 26, 2023

Photo of Shane Murray
Guest
Shane Murray
LinkedIn

Shane Murray is the Field CTO at Monte Carlo, a data reliability company that created the industry's first end-to-end Data Observability platform. Shane’s career has taken him through a successful 9-year tenure at The New York Times, where he grew the data analytics team from 12 to 150 people and managed all core data products. Shane is an expert when it comes to data observability, enabling effective ROI for data initiatives, scaling high-impact data teams, and more.


Photo of Adel Nehme
Host
Adel Nehme

Adel is a Data Science educator, speaker, and Evangelist at DataCamp where he has released various courses and live training on data analysis, machine learning, and data engineering. He is passionate about spreading data skills and data literacy throughout organizations and the intersection of technology and society. He has an MSc in Data Science and Business Analytics. In his free time, you can find him hanging out with his cat Louis.

Key quotes

I think you can approach the problems in enabling ROI for data leaders through the lens of how we think about observability. You have detection solutions, you have resolution, and you have prevention. On the detection side you have automated machine learning driven monitors. You have ways to target your alerting to different teams to make sure you're managing that signal-to-noise ratio in terms of alerts. Then on resolution, you have tools where you can actually look upstream as an analyst, see the initial cause of the data incident that you're investigating, be able to resolve it, and talk to the right partner upstream. And then also for those data producers to be able to look downstream and see the full scope of an incident on their side, I think that's just a phenomenal innovation in this space.

We typically think of one of the issues of data quality being downtime: the erroneous, missing, incomplete, or delayed data that often plague data initiatives. The consequence of downtime can range from this almost trivial outcome where engineers or analysts respond, and the result is the hours lost to address the issue, to actually more existential, where you're losing trust, revenue, or even customers. And then, at the far end of the scale, you could actually be putting in danger the reputation of the business.

Key takeaways

1

Before decentralizing a data team, it’s important that the data team is sufficiently mature to be able to handle decentralization efficiently and effectively.

2

Data teams should be focused on building data products that actually drive revenue in line with the organization’s goals.

3

It’s important to get the basics in place that free up your data team to do more expansive data roadmap work, such as self-service access, so stakeholders can get answers to basic questions without taking up team bandwidth.

Topics
Related

podcast

[Radar Recap] Scaling Data ROI: Driving Analytics Adoption Within Your Organization with Laura Gent Felker, Omar Khawaja and Tiffany Perkins-Munn

Laura, Omar and Tiffany explore best practices when it comes to scaling analytics adoption within the wider organization

Richie Cotton

40 min

podcast

[Radar Recap] Scaling Data Quality in the Age of Generative AI

Barr Moses, CEO of Monte Carlo Data, Prukalpa Sankar, Cofounder at Atlan, and George Fraser, CEO at Fivetran, discuss the nuances of scaling data quality for generative AI applications, highlighting the unique challenges and considerations that come into play.
Adel Nehme's photo

Adel Nehme

41 min

podcast

How Data Scientists Can Thrive in Consulting

Pratik Agrawal, Partner at Kearney, joins us to discuss how data teams can scale value in consulting environments.
Richie Cotton's photo

Richie Cotton

42 min

podcast

Building High-Impact Data Teams at Capital One

Dan Kellet, Chief Data Officer at Capital One UK, joins us to discuss how he scaled Capital One’s data team.
Adel Nehme's photo

Adel Nehme

36 min

podcast

Successful Frameworks for Scaling Data Maturity

Ganes, talks about scaling data maturity, building an effective data science roadmap, navigating the skills and people components of data maturity and more.
Adel Nehme's photo

Adel Nehme

44 min

podcast

Data Science, Gambling and Bookmaking

Marco Blume, Trading Director at Pinnacle Sports talks about the role of data science in large-scale bets and bookmaking, how Marco is training an army of data scientists and much more.
Hugo Bowne-Anderson's photo

Hugo Bowne-Anderson

54 min

See MoreSee More