Skip to main content
HomeAbout RLearn R

What is the Best Statistical Programming Language? Infograph

The infograph 'Statistical Language Wars' compares statistical programming language like SAS, R and SPSS to see how they stack up.
Jun 2014  · 2 min read

A feature that all programming communities have in common is the numerous debates about why their programming language of choice is better, more advanced, faster, holier etc. In today's data science community, it seems as if these discussions are omnipresent with advocates of SAS, SPSS, R, Python, Julia, etc. battling and challenging each other on every online medium on the best statistical programming language. (side note: These 'data driven' debates are often a good example of how you can prove anything with statistics.)

While these debates are a good thing for the community and the programming language as a whole, they unfortunately also have a negative effect on those individuals that are just in the beginning of their data analytics career. Biased opinions on all sides of the table make it difficult for new data analysts to see the forest for the trees when choosing a statistical programming language.

An Infograph for each Statistical Programming Language

Especially for this new group of data analysts (and future debaters), as well as for everyone else that is interested in learning data science or an additional statistical language, we created the infograph 'Statistical Language Wars' that gives a basic comparison between statistical programming languages like SAS, R and SPSS to see how they stack up. This is to provide a more clear starting point.

(To dive in to learning R, try this free introductory course. Also, check out DataCamp's R Data Import Tutorial.)

statistical programming language infograph
Source: datacamp.com/community/blog

We'll make sure to regularly update this infograph based on the feedback you provide, and we will definitely consider to create some new infographs that focus more on other players such as Python and Julia.

Feel free to share!

Learn more about R

Introduction to R

Beginner
4 hr
2.5M
Master the basics of data analysis in R, including vectors, lists, and data frames, and practice R with real data sets.
See DetailsRight Arrow
Start Course
See MoreRight Arrow
Related

Building Your Data Science Portfolio with DataCamp Workspace (Part 1)

Learn how to build a comprehensive data science portfolio by exploring examples different examples, mastering tips to make your work stand out, and utilizing the DataCamp Workspace effectively to showcase your results.
Justin Saddlemyer's photo

Justin Saddlemyer

9 min

Google Bard for Data Science Projects

Learn how to leverage Google Bard for project planning, data preprocessing, exploratory data analysis, feature engineering, model selection, hyperparameter tuning, model validation, and building and deployment of a web application.
Abid Ali Awan's photo

Abid Ali Awan

13 min

Building a Safer Internet with Data Science

Learn the key drivers of a data strategy that helps ensure online safety and consumer protection with Richard Davis, the Chief Data Officer at Ofcom, the UK’s government-approved regulatory and competition authority. 
Adel Nehme's photo

Adel Nehme

43 min

How Data Scientists Can Thrive in the FMCG Industry

Find out how data science drives strategy in the FMCG industry.
Adel Nehme's photo

Adel Nehme

42 min

Conda Cheat Sheet

In this cheat sheet, learn all about the basics of working with Conda. From managing and installing packages, to working with channels & environments, learn the fundamentals of the conda package management tool suite.
Richie Cotton's photo

Richie Cotton

Git Rebase Tutorial for Beginners

Discover what Git Rebase is and how to use it in your data science workflows.
Javier Canales Luna's photo

Javier Canales Luna

8 min

See MoreSee More