Skip to main content
HomeBlogArtificial Intelligence (AI)

What is Online Machine Learning?

Online ML: Adaptively learns from data points in real-time, providing timely & accurate predictions in data-rich environments.
Aug 2023  · 5 min read

Online machine learning is a method of machine learning where the model incrementally learns from a stream of data points in real-time. It’s a dynamic process that adapts its predictive algorithm over time, allowing the model to change as new data arrives. This method is incredibly significant in today's rapidly evolving data-rich environments because it can provide timely and accurate predictions.

Online Machine Learning Explained

In traditional, or "batch" machine learning, the model is trained using the entirety of the data set at once. This process is often computationally intensive and may not reflect real-time changes. In contrast, online machine learning processes one data point at a time, updating the model's parameters as it goes.

Consider it like learning to ride a bicycle. Batch learning is like reading a comprehensive book on cycling before getting on the bike. You've gathered all the information, but it might not be practical when you're actually on the road, facing varying terrains and weather conditions.

On the other hand, online learning is like learning to ride the bike as you go along, adjusting your balance and pedaling speed based on the road you're on. You adapt to the terrain, wind direction, and other real-time factors.

The underlying algorithms for online machine learning vary, but most of them focus on minimizing the prediction error for the next instance based on the previously seen data. Some commonly used algorithms include incremental Stochastic Gradient Descent (SGD), Passive-Aggressive algorithms, and Perceptron.

Real-World Use Cases of Online Machine Learning

  • Financial markets. Stock prices fluctuate rapidly throughout the day. Online machine learning algorithms can be used to adapt to these changes in real-time, providing more accurate predictions and better investment strategies.
  • Health monitoring systems. Wearable tech like smartwatches continuously collect data about heart rate, sleep patterns, etc. Using online learning, these devices can detect anomalies and possibly predict health issues based on real-time data.
  • Fraud detection. Online banking and digital transactions generate continuous streams of data. With online learning, fraudulent transactions can be detected instantly, preventing losses.

What are the Benefits of Online Machine Learning?

  • Adaptability. Just like the cyclist learning as they go, online machine learning can adapt to new patterns in the data, improving its performance over time.
  • Scalability. Since online learning processes data one at a time, it doesn't require the storage capacity that batch learning does. This makes it scalable to big data applications.
  • Real-time predictions. Unlike batch learning that might be outdated by the time it's implemented, online learning provides real-time insights, which can be critical in many applications like stock trading and health monitoring.
  • Efficiency. As online machine learning allows for continuous learning and updating of models, this can lead to faster and more cost-efficient decision-making processes.

What are the Limitations of Online Machine Learning?

  • Sensitive to sequence. The order in which the data is presented can impact the learning process. An unusual data point can significantly alter the model's parameters, leading to decreased accuracy.
  • Less control over training. Unlike batch learning, where you can control the training process, online learning is always on. An unexpected influx of bad quality data can lead to poor predictions.
  • Lack of interpretability. Online learning algorithms, especially those based on deep learning or neural networks, can be highly complex and difficult to interpret. This lack of interpretability can make it challenging to understand and explain the model's decisions.

Given these limitations, batch learning models are more suitable in scenarios where the order of data presentation is not important, there is a need for more control over the training process, and interpretability of the model's decisions is crucial.

Online Machine Learning vs Incremental Learning

While both online and incremental learning processes data piece-by-piece, there are subtle differences. Online learning processes data in real-time and continuously updates its model, while incremental learning processes chunks of data at scheduled intervals.

Consider the difference between streaming a movie (online learning) and watching it in parts as they download (incremental learning). Both methods let you watch the movie without waiting for the whole download, but the experience and real-time adaptability differ.

Implementation of Online Machine Learning

In production, offline models are commonly used. These models are trained on generalized data and offer consistent performance. However, deploying online machine learning models requires many steps, checks, and balances:

  1. Start with an offline model to debug fundamental issues before adding online learning complexity.
  2. Use a validation set to evaluate model performance over time.
  3. Manage concept and data drift by detecting changes and adapting the model using techniques like weighing recent data.
  4. Regularly retrain the full model offline to avoid losing model capacity.
  5. Begin with simple, fast algorithms like SGD classifiers before more complex ones.
  6. Closely monitor incoming data quality.
  7. Have a rollback plan to revert to previous model versions if updates cause issues.
  8. Update the model incrementally rather than overfitting to recent examples.

While online models may appear flawless for predicting real-time fluctuations in stock market prices in theory, implementing these solutions in practice can be daunting due to their sensitivity to input data. To ensure success, it is necessary to incorporate quality checks, real-time monitoring, and a rollback plan.

Want to learn more about AI and machine learning? Check out the following resources:


Can any machine learning algorithm be used for online learning?

Not all algorithms are suitable for online learning. Algorithms need to be able to update their model incrementally based on a single instance to be used for online learning.

What is the difference between online learning and real-time learning?

Online learning and real-time learning are often used interchangeably, but there's a subtle difference. While both methods process data as it comes, real-time learning has the added connotation of time constraints. It implies the model not only learns but also makes predictions in a limited time frame.

Can online learning be used for offline data?

Yes, online learning algorithms can be used for offline data by simulating a stream of data from the dataset. However, one should remember that the real power of online learning shines with real-time data streams.

Photo of Abid Ali Awan
Abid Ali Awan

I am a certified data scientist who enjoys building machine learning applications and writing blogs on data science. I am currently focusing on content creation, editing, and working with large language models.


What is Retrieval Augmented Generation (RAG)?

Explore Retrieval Augmented Generation (RAG) RAG: Integrating LLMs with data search for nuanced AI responses. Understand its applications and impact.
Natassha Selvaraj's photo

Natassha Selvaraj

8 min

What Fortune 1000 Executives Believe about Data & AI in 2024 with Randy Bean, Innovation Fellow, Data Strategy, Wavestone

Randy and Richie explore the 2024 Data and AI Leadership Executive Survey, the impact of generative AI in 2023 and what to expect from it in 2024.
Richie Cotton's photo

Richie Cotton

46 min

Data Security in the Age of AI with Bart Vandekerckhove, Co-founder at Raito

Richie and Bart explore the importance of data access management, the roles involved in data access including senior management’s role in data access, data security and privacy tools, the impact of AI on data security, advice for improving data security and much more.
Richie Cotton's photo

Richie Cotton

46 min

What is Normalization in Machine Learning? A Comprehensive Guide to Data Rescaling

Explore the importance of Normalization, a vital step in data preprocessing that ensures uniformity of the numerical magnitudes of features.
Sejal Jaiswal's photo

Sejal Jaiswal

13 min

How Transformers Work: A Detailed Exploration of Transformer Architecture

Explore the architecture of Transformers, the models that have revolutionized data handling through self-attention mechanisms.
Josep Ferrer's photo

Josep Ferrer

15 min

Cross-Entropy Loss Function in Machine Learning: Enhancing Model Accuracy

Explore cross-entropy in machine learning in our guide on optimizing model accuracy and effectiveness in classification with TensorFlow and PyTorch examples.
Kurtis Pykes 's photo

Kurtis Pykes

12 min

See MoreSee More