must read
python
+1

Top Python IDEs for 2019

Curious about which Python environment is best suited for you? In this tutorial, you'll be given an overview of the top Python IDEs used for data science.
37
37
python

f-string Formatting in Python

Learn about the f-string formatting technique in Python 3.6. In this tutorial, you'll see what advantages it offers and go through some example use cases.
16
16
data visualization
+2

Cluster Analysis in Tableau

Learn how to easily cluster your data in Tableau with its built-in clustering tool.
18
18
python
+2

Quadrant Analysis in Tableau

Learn how to analyze data in the form of a dynamic quadrant chart in Tableau.
16
16
python
+3

Moving Averages in pandas

Learn how you can capture trends and make sense out of time series data with the help of a moving or rolling average.
19
19
python
+1

Implementing Neural Style Transfer Using TensorFlow 2.0

In this tutorial, you'll learn how to implement power applications like Prisma using TensorFlow 2.0.
9
9
python
+4

Demystifying Mathematical Concepts for Deep Learning

Explore basic math concepts for data science and deep learning such as scalar and vector, determinant, singular value decomposition, and more.
18
18
python
+3

Histograms in Matplotlib

Learn about histograms and how you can use them to gain insights from data with the help of matplotlib.
11
11
python

Inner Classes in Python

In this basic Python tutorial, you'll learn about why and when you should use inner classes.
7
7
data manipulation

Data Wrangling with INDEX-MATCH in Spreadsheets

In this tutorial, you will get an overview of how to use the INDEX-MATCH function in spreadsheets.
14
14
python

Usage of Asterisks in Python

Many Python users are familiar with using asterisks for multiplication and power operators, but in this tutorial, you'll find out additional ways on how to apply the asterisk.
16
16
python
+1

Principal Component Analysis (PCA) in Python

Learn about PCA and how it can be leveraged to extract information from the data without any supervision using two popular datasets: Breast Cancer and CIFAR-10.
17
17
pandas
+1

Importing Data into Pandas

To be an adept data scientist, one must know how to deal with many different kinds of data. Learn to read various formats of data like JSON and HTML using pandas.
16
16
tensorflow
+1

Ten Important Updates from TensorFlow 2.0

Go through the ten most important updates introduced in the newly released TensorFlow 2.0, and learn how to implement some of them.
11
11
business
+2

Inventory Model Simulation with Spreadsheets

Learn how to use spreadsheets to calculate an inventory demand model that helps determine how much inventory a business should hold moving forward.
9
9