Pular para o conteúdo principal
InicioBlogCiência de dados

Data Scientist vs Data Engineer

The differences between data engineers and data scientists explained: responsibilities, tools, languages, job outlook, salary, etc.
Actualizado 17 de out. de 2023  · 11 min leer

In the ever-evolving landscape of data-driven industries, the roles of data scientists and data engineers have emerged as distinct yet interconnected professions. While both roles play a crucial part in managing and extracting value from data, their responsibilities, skill sets, and objectives often differ.

A few years ago, the primary focus was on gleaning insights from data. However, as the industry matured, the significance of robust data management and the adage "Garbage In, Garbage Out" became more pronounced.

This shift in perspective has brought the role of data engineers to the forefront, emphasizing the symbiotic relationship between them and data scientists.

This article delves into the nuances of these roles, exploring their responsibilities, educational backgrounds, tools they use, and more. For a visual representation, be sure to check out our infographic on 'Data Engineering versus Data Science'.

Unlock your career with custom learning

Trying to strengthen your data skills? Our AI assistant explores your goals and interests to recommend the perfect content. Start building skills that matter to you and your career.
Discover

Responsibilities

Sate Engineer

Data Engineers' Responsibilities

The data engineer is someone who develops, constructs, tests and maintains architectures, such as databases and large-scale processing systems. The data scientist, on the other hand, is someone who cleans, massages, and organizes (big) data.

You might find the choice of the verb "massage" particularly exotic, but it only reflects the difference between data engineers and data scientists even more.

Generally speaking, the efforts that both parties will need to do to get the data in a usable format is considerably different.

Data engineers deal with raw data that contains human, machine or instrument errors. The data might not be validated and contain suspect records; It will be unformatted and can contain codes that are system-specific.

The data engineers will need to recommend and sometimes implement ways to improve data reliability, efficiency, and quality. To do so, they will need to employ a variety of languages and tools to marry systems together or try to hunt down opportunities to acquire new data from other systems so that the system-specific codes, for example, can become information in further processing by data scientists.

Very closely related to these two is the fact that data engineers will need to ensure that the architecture that is in place supports the requirements of the data scientists and the stakeholders, the business.

Lastly, to deliver the data to the data science team, the data engineering team will need to develop data set processes for data modeling, mining, and production.

Find out more about what a data engineer does in our full article. 

Data Engineer Responsibilities

Data Scientists' Responsibilities

Data scientists will usually already get data that has passed a first round of cleaning and manipulation, which they can use to feed to sophisticated analytics programs and machine learning and statistical methods to prepare data for use in predictive and prescriptive modeling. Of course, to build models, they need to do research industry and business questions, and they will need to leverage large volumes of data from internal and external sources to answer business needs. This also sometimes involves exploring and examining data to find hidden patterns.

Once data scientists have done the analyses, they will need to present a clear story to the key stakeholders and when the results get accepted, they will need to make sure that the work is automated so that the insights can be delivered to the business stakeholders on a daily, monthly or yearly basis.

It is clear that both parties need to work together to wrangle the data and provide insights to business-critical decisions. There is a clear overlap in skillsets, but the two are gradually becoming more distinct in the industry: while the data engineer will work with database systems, data API's and tools for ETL purposes, and will be involved in data modeling and setting up data warehouse solutions, the data scientist needs to know about stats, math and machine learning to build predictive models.

The data scientist needs to be aware of distributed computing, as he will need to gain access to the data that has been processed by the data engineering team, but he or she'll also need to be able to report to the business stakeholders: a focus on storytelling and visualization is essential.

What this means in terms of focus on the steps of the data science workflow, you can see in the image below:

Data Scientist Workflow

Languages, Tools & Software

Of course, this difference in skillsets translates into differences in languages, tools, and software that both use. The following overview includes both commercial and open source alternatives.

Even though the tools that both parties heavily depends on how the role is conceived in the company context, you will often see data engineers working with tools such as SAP, Oracle, Cassandra, MySQL, Redis, Riak, PostgreSQL, MongoDB, neo4j, Hive, and Sqoop.

Data scientists will make use of languages such as SPSS, R, Python, SAS, Stata and Julia to build models. The most popular tools here are, without a doubt, Python and R. When you're working with Python and R for data science, you will most often resort to packages such as ggplot2 to make amazing data visualizations in R or the Python data manipulation library Pandas. Of course, there are many more packages out there that will come in handy when you're working on data science projects, such as Scikit-Learn, NumPy, Matplotlib, Statsmodels, etc.

In the industry, you'll also find that commercial SAS and SPSS do well, but also other tools such as Tableau, Rapidminer, Matlab, Excel, Gephi will find their way to the data scientist's toolbox.

You see again that one of the main distinctions between data engineers and data scientists, the emphasis on data visualization and storytelling, is reflected in thetools that are mentioned.

Tools, languages, and software that both parties have in common, as you might have already guessed, are Scala, Java, and C#.

Data Science Languages Tools & Software

These are languages that aren't necessarily popular for both data scientists and engineers: you could argue that Scala is more popular with data engineers because the integration with Spark is especially handy to set up large ETL flows.

The same goes a bit for the Java language: at the moment, its popularity is on the rise with data scientists, but overall, it's not widely used on a daily basis by professionals. But, all in all, you'll see these languages popping up on job openings of both roles. The same can also be said about tools that both parties could have in common, such as Hadoop, Storm, and Spark.

Of course, the comparison in tools, languages, and software needs to be seen in the specific context in which you're working and how you interpret the data science roles in question; data science and data engineering can lie closely together in some specific cases, where the distinction between data science and data engineering teams is indeed so small that sometimes, the two teams are merged.

Whether this is a great idea or not is enough material for another discussion which is not in the scope of today's blog.

Educational Background

Besides all of this, data scientists and data engineers might also have something in common: their Computer Science backgrounds. This study area is widely popular for both professions. Of course, you'll also see that data scientists have often studied econometrics, mathematics, statistics and operations research. They often have a little bit more business acumen than data engineers. You often see that data engineers also come from engineering backgrounds, and more often than not, they have had some prior education in computer engineering.

However, all of this doesn't mean at all that you won't find data engineers that have gathered knowledge in operations and business acumen from prior studies.

Data Engineer Education

You have to realize that, in general, the data science industry is made up of professionals that come from all different types of backgrounds: it is not uncommon that physicists, biologists, or meteorologists find their way to data science. Others have made a career switch to data science and come from web development, database administration, etc.

Salaries & Hiring

When it comes to salaries, in the US the average annual data scientist salary is $103,000, almost double the national average salary. Across different countries this is a similar trend, with the average data scientist salary at least 30% higher than the national average (and in India this figure is significantly higher!).

For data engineers, the average annual salary in the US is $114,000, and likewise in other countries the average data engineer salary is very similar to that of a data scientist.

Both roles are hugely in demand. At the time of writing, Indeed lists 12,000 'data scientist' roles and 6,000 'data engineer' roles in the US. Leading companies such as Spotify, Meta, Amazon, Google and Microsoft are nearly always hiring for both roles.

Data Engineer Salaries

Job Outlook

As described before, the creation of roles and titles is needed to reflect changing needs, but other times they are created as a way to differentiate from fellow recruiting companies.

In addition to the rise in interest for data management issues, companies are looking for cheaper, flexible and scalable solutions to store and manage their data. They want to move their data to the Cloud and to do this, they need to build "data lakes" as a complement to the data warehouses that they already have in place or as a replacement for the Operational Data Store (ODS).

Data flows will need to be redirected and replaced in the coming years and as a result, the focus on and the number of job postings to hire data engineers has gradually increased over the years.

The data scientist role has been in demand since the start of the hype, but nowadays, companies are looking to compose data science teams instead of hiring unicorn data scientists that possess communication skills, creativity, cleverness, curiosity, technical expertise, etc. For recruiters, it's hard finding persons that embody all the qualities that companies are looking for and the demand clearly exceeds the supply.

You could argue that the "data scientist bubble" has burst. Or maybe it will still burst in the future.

One thing will still hold throughout all of this: the demand for experts that have a passion for data science topics will always be there. The job outlook for these experts is highly positive. For example, the US Bureau of Labor Statistics projects there will be 17,700 job openings for data scientists each year, for the next decade, and its similaryly bullish for data engineer openings.

Data Scientist Job Outlook

Getting Started With Data Engineering and Data Science

If you'd like to plot your path to starting a career in either roles, our guides are a great place to start:

If you'd like to delve straight into your learning journey, DataCamp has you covered. We have many courses that are ideal if you want to start learning data engineering. For example, DataCamp's Importing Data in Python and the Importing Data in R courses. Our Data Engineer Certification is another great option to prove to hiring managers that you have the required skills for an entry-level role.

For those who want to get started with data science, there's the Exploratory Data Analysis, Introduction to R for Data Science, Machine Learning Toolbox and Introduction to Python for Data Science courses. Likewise, our Data Scientist Certification is highly regarded and will help you get through the door at leading companies.

Start learning interactively today!

FAQs

What does a data engineer do?

A data engineer is someone who develops, constructs, tests, and maintains architectures, such as databases and large-scale processing systems. Data engineers deal with raw data that contains human, machine or instrument errors and one of their main roles is to clean the data so that a data scientist can then analyze it. See our guide for more details.

What is the difference between a data engineer and a data scientist?

Data engineers focus on managing and organizing data, building and maintaining databases and data pipelines, while data scientists focus on analyzing and interpreting data to find insights and patterns.

What skills do data engineers need?

Data engineers need skills in database systems, data API's, ETL tools, data modeling, and setting up data warehouse solutions.

What skills do data scientists need?

Data scientists need skills in statistics, math, and machine learning to build predictive models, as well as storytelling and visualization to effectively communicate insights to stakeholders.

What languages and tools do data engineers use?

Data engineers use tools such as SAP, Oracle, Cassandra, MySQL, Redis, Riak, PostgreSQL, MongoDB, neo4j, Hive, and Sqoop.

What languages and tools do data scientists use?

Data scientists use languages such as SPSS, R, Python, SAS, Stata, and Julia, and tools such as Python data manipulation library Pandas, ggplot2 for data visualization in R, and Scikit-Learn, NumPy, Matplotlib, and Statsmodels.

What educational backgrounds do data engineers and data scientists typically have?

Both data engineers and data scientists often have backgrounds in computer science, but data scientists may also have education in econometrics, mathematics, statistics, and operations research, while data engineers may have education in computer engineering.

What is the job outlook for data engineers and data scientists?

The demand for both roles is high, with more job openings for data scientists than data engineers. Companies are also increasingly looking to build data science teams rather than hiring individual unicorn data scientists.


Photo of Karlijn Willems
Author
Karlijn Willems
LinkedIn

Former Data Journalist at DataCamp | Manager at NextWave Consulting

Temas
Relacionado

blog

Data Engineering vs. Data Science Infographic

Check out our newest infographic comparing the roles of a Data Engineer and a Data Scientist
Jacob Moody's photo

Jacob Moody

1 min

Choosing a career path

blog

Data Analyst vs. Data Scientist: A Comparative Guide For 2024

Learn about the key differences between the two most popular data science roles, including which skill sets are required, key duties, project life cycles, and earning potential.
DataCamp Team's photo

DataCamp Team

18 min

blog

What is Data Engineering?

Learn what data engineering is, what is the difference between data science and data engineering, the scope in the field, and how to learn data engineering.
Çağlar Uslu's photo

Çağlar Uslu

8 min

blog

Data Science Roles Beyond the Title “Data Scientist”

In this article, we'll break down the different data roles practitioners can pursue that go beyond just "data scientist".
Travis Tang 's photo

Travis Tang

10 min

blog

What Does a Data Engineer Do?

Curious about what a data engineer does? We break down the different data engineer roles & career paths and look at a typical data engineering project.
Joleen Bothma's photo

Joleen Bothma

9 min

tutorial

The Data Science Industry: Who Does What (Infographic)

This infograph compares the roles of data scientists, data analysts, data architects, data engineers and more in the data science industry.
Karlijn Willems's photo

Karlijn Willems

3 min

See MoreSee More