Introduction to Data Engineering

Learn about the world of data engineering with an overview of all its relevant topics and tools!
Start Course for Free
4 Hours15 Videos57 Exercises62,441 Learners
4100 XP

Create Your Free Account

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

Have you heard people talk about data engineers and wonder what it is they do? Do you know what data engineers do but you're not sure how to become one yourself? This course is the perfect introduction. It touches upon all things you need to know to streamline your data processing. This introductory course will give you enough context to start exploring the world of data engineering. It's perfect for people who work at a company with several data sources and don't have a clear idea of how to use all those data sources in a scalable way. Be the first one to introduce these techniques to your company and become the company star employee.

  1. 1

    Introduction to Data Engineering

    In this first chapter, you will be exposed to the world of data engineering! Explore the differences between a data engineer and a data scientist, get an overview of the various tools data engineers use and expand your understanding of how cloud technology plays a role in data engineering.
    Play Chapter Now
  2. 2

    Data engineering toolbox

    Now that you know the primary differences between a data engineer and a data scientist, get ready to explore the data engineer's toolbox! Learn in detail about different types of databases data engineers use, how parallel computing is a cornerstone of the data engineer's toolkit, and how to schedule data processing jobs using scheduling frameworks.
    Play Chapter Now
  3. 3

    Extract, Transform and Load (ETL)

    Having been exposed to the toolbox of data engineers, it's now time to jump into the bread and butter of a data engineer's workflow! With ETL, you will learn how to extract raw data from various sources, transform this raw data into actionable insights, and load it into relevant databases ready for consumption!
    Play Chapter Now
  4. 4

    Case Study: DataCamp

    Cap off all that you've learned in the previous three chapters by completing a real-world data engineering use case from DataCamp! You will perform and schedule an ETL process that transforms raw course rating data, into actionable course recommendations for DataCamp students!
    Play Chapter Now
In the following tracks
Data Engineer
Adel Nehme
Vincent Vankrunkelsven Headshot

Vincent Vankrunkelsven

Data and Software Engineer @DataCamp
Vincent has a Master's degree in Computer Science and has several years of experience scaling up the DataCamp's platform as a Software Engineer. He experienced first-hand the difficulties that come with building scalable data products. This made him passionate about teaching people how to do tackle these problems the right way.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA