Skip to main content

KNN Classification Tutorial using Scikit-learn

Learn K-Nearest Neighbor(KNN) Classification and build KNN classifier using Python Scikit-learn package.
Aug 2018  · 14 min read

K Nearest Neighbor(KNN) is a very simple, easy to understand, versatile and one of the topmost machine learning algorithms. KNN used in the variety of applications such as finance, healthcare, political science, handwriting detection, image recognition and video recognition. In Credit ratings, financial institutes will predict the credit rating of customers. In loan disbursement, banking institutes will predict whether the loan is safe or risky. In political science, classifying potential voters in two classes will vote or won’t vote. KNN algorithm used for both classification and regression problems. KNN algorithm based on feature similarity approach.

In this tutorial, you are going to cover the following topics:

K-Nearest Neighbors

K-Nearest Neighbors

KNN is a non-parametric and lazy learning algorithm. Non-parametric means there is no assumption for underlying data distribution. In other words, the model structure determined from the dataset. This will be very helpful in practice where most of the real world datasets do not follow mathematical theoretical assumptions. Lazy algorithm means it does not need any training data points for model generation. All training data used in the testing phase. This makes training faster and testing phase slower and costlier. Costly testing phase means time and memory. In the worst case, KNN needs more time to scan all data points and scanning all data points will require more memory for storing training data.

How does the KNN algorithm work?

In KNN, K is the number of nearest neighbors. The number of neighbors is the core deciding factor. K is generally an odd number if the number of classes is 2. When K=1, then the algorithm is known as the nearest neighbor algorithm. This is the simplest case. Suppose P1 is the point, for which label needs to predict. First, you find the one closest point to P1 and then the label of the nearest point assigned to P1.

How does the KNN algorithm work?

Suppose P1 is the point, for which label needs to predict. First, you find the k closest point to P1 and then classify points by majority vote of its k neighbors. Each object votes for their class and the class with the most votes is taken as the prediction. For finding closest similar points, you find the distance between points using distance measures such as Euclidean distance, Hamming distance, Manhattan distance and Minkowski distance. KNN has the following basic steps:

  1. Calculate distance
  2. Find closest neighbors
  3. Vote for labels
How does the KNN algorithm work?

Eager Vs. Lazy Learners

Eager learners mean when given training points will construct a generalized model before performing prediction on given new points to classify. You can think of such learners as being ready, active and eager to classify unobserved data points.

Lazy Learning means there is no need for learning or training of the model and all of the data points used at the time of prediction. Lazy learners wait until the last minute before classifying any data point. Lazy learner stores merely the training dataset and waits until classification needs to perform. Only when it sees the test tuple does it perform generalization to classify the tuple based on its similarity to the stored training tuples. Unlike eager learning methods, lazy learners do less work in the training phase and more work in the testing phase to make a classification. Lazy learners are also known as instance-based learners because lazy learners store the training points or instances, and all learning is based on instances.

Curse of Dimensionality

KNN performs better with a lower number of features than a large number of features. You can say that when the number of features increases than it requires more data. Increase in dimension also leads to the problem of overfitting. To avoid overfitting, the needed data will need to grow exponentially as you increase the number of dimensions. This problem of higher dimension is known as the Curse of Dimensionality.

To deal with the problem of the curse of dimensionality, you need to perform principal component analysis before applying any machine learning algorithm, or you can also use feature selection approach. Research has shown that in large dimension Euclidean distance is not useful anymore. Therefore, you can prefer other measures such as cosine similarity, which get decidedly less affected by high dimension.

How do you Decide the Number of Neighbors in KNN?

Now, you understand the KNN algorithm working mechanism. At this point, the question arises that How to choose the optimal number of neighbors? And what are its effects on the classifier? The number of neighbors(K) in KNN is a hyperparameter that you need choose at the time of model building. You can think of K as a controlling variable for the prediction model.

Research has shown that no optimal number of neighbors suits all kind of data sets. Each dataset has it's own requirements. In the case of a small number of neighbors, the noise will have a higher influence on the result, and a large number of neighbors make it computationally expensive. Research has also shown that a small amount of neighbors are most flexible fit which will have low bias but high variance and a large number of neighbors will have a smoother decision boundary which means lower variance but higher bias.

Generally, Data scientists choose as an odd number if the number of classes is even. You can also check by generating the model on different values of k and check their performance. You can also try Elbow method here.

How do you Decide the Number of Neighbors in KNN?

Classifier Building in Scikit-learn

KNN Classifier

Defining dataset

Let's first create your own dataset. Here you need two kinds of attributes or columns in your data: Feature and label. The reason for two type of column is "supervised nature of KNN algorithm".

# Assigning features and label variables
# First Feature
# Second Feature

# Label or target varible

Run and edit the code from this tutorial online

Open Workspace

In this dataset, you have two features (weather and temperature) and one label(play).

Encoding data columns

Various machine learning algorithms require numerical input data, so you need to represent categorical columns in a numerical column.

In order to encode this data, you could map each value to a number. e.g. Overcast:0, Rainy:1, and Sunny:2.

This process is known as label encoding, and sklearn conveniently will do this for you using Label Encoder.

# Import LabelEncoder
from sklearn import preprocessing
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]

Here, you imported preprocessing module and created Label Encoder object. Using this LabelEncoder object, you can fit and transform "weather" column into the numeric column.

Similarly, you can encode temperature and label into numeric columns.

# converting string labels into numbers

Combining Features

Here, you will combine multiple columns or features into a single set of data using "zip" function

#combinig weather and temp into single listof tuples

Generating Model

Let's build KNN classifier model.

First, import the KNeighborsClassifier module and create KNN classifier object by passing argument number of neighbors in KNeighborsClassifier() function.

Then, fit your model on the train set using fit() and perform prediction on the test set using predict().

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets,label)

#Predict Output
predicted= model.predict([[0,2]]) # 0:Overcast, 2:Mild

In the above example, you have given input [0,2], where 0 means Overcast weather and 2 means Mild temperature. Model predicts [1], which means play.

KNN with Multiple Labels

Till now, you have learned How to create KNN classifier for two in python using scikit-learn. Now you will learn about KNN with multiple classes.

In the model the building part, you can use the wine dataset, which is a very famous multi-class classification problem. This data is the result of a chemical analysis of wines grown in the same region in Italy using three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

The dataset comprises 13 features ('alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline') and a target (type of cultivars).

This data has three types of cultivar classes: 'class_0', 'class_1', and 'class_2'. Here, you can build a model to classify the type of cultivar. The dataset is available in the scikit-learn library, or you can also download it from the UCI Machine Learning Library.

Loading Data

Let's first load the required wine dataset from scikit-learn datasets.

#Import scikit-learn dataset library
from sklearn import datasets

#Load dataset
wine = datasets.load_wine()

Exploring Data

After you have loaded the dataset, you might want to know a little bit more about it. You can check feature and target names.

# print the names of the features
['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
# print the label species(class_0, class_1, class_2)
['class_0' 'class_1' 'class_2']

Let's check top 5 records of the feature set.

# print the wine data (top 5 records)
[[  1.42300000e+01   1.71000000e+00   2.43000000e+00   1.56000000e+01
    1.27000000e+02   2.80000000e+00   3.06000000e+00   2.80000000e-01
    2.29000000e+00   5.64000000e+00   1.04000000e+00   3.92000000e+00
 [  1.32000000e+01   1.78000000e+00   2.14000000e+00   1.12000000e+01
    1.00000000e+02   2.65000000e+00   2.76000000e+00   2.60000000e-01
    1.28000000e+00   4.38000000e+00   1.05000000e+00   3.40000000e+00
 [  1.31600000e+01   2.36000000e+00   2.67000000e+00   1.86000000e+01
    1.01000000e+02   2.80000000e+00   3.24000000e+00   3.00000000e-01
    2.81000000e+00   5.68000000e+00   1.03000000e+00   3.17000000e+00
 [  1.43700000e+01   1.95000000e+00   2.50000000e+00   1.68000000e+01
    1.13000000e+02   3.85000000e+00   3.49000000e+00   2.40000000e-01
    2.18000000e+00   7.80000000e+00   8.60000000e-01   3.45000000e+00
 [  1.32400000e+01   2.59000000e+00   2.87000000e+00   2.10000000e+01
    1.18000000e+02   2.80000000e+00   2.69000000e+00   3.90000000e-01
    1.82000000e+00   4.32000000e+00   1.04000000e+00   2.93000000e+00

Let's check records of the target set.

# print the wine labels (0:Class_0, 1:Class_1, 2:Class_3)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

Let's explore it for a bit more. You can also check the shape of the dataset using shape.

# print data(feature)shape
(178, 13)
# print target(or label)shape

Splitting Data

To understand model performance, dividing the dataset into a training set and a test set is a good strategy.

Let's split dataset by using function train_test_split(). You need to pass 3 parameters features, target, and test_set size. Additionally, you can use random_state to select records randomly.

# Import train_test_split function
from sklearn.model_selection import train_test_split

# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(,, test_size=0.3) # 70% training and 30% test

Generating Model for K=5

Let's build KNN classifier model for k=5.

#Import knearest neighbors Classifier model
from sklearn.neighbors import KNeighborsClassifier

#Create KNN Classifier
knn = KNeighborsClassifier(n_neighbors=5)

#Train the model using the training sets, y_train)

#Predict the response for test dataset
y_pred = knn.predict(X_test)

Model Evaluation for k=5

Let's estimate, how accurately the classifier or model can predict the type of cultivars.

Accuracy can be computed by comparing actual test set values and predicted values.

#Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.685185185185

Well, you got a classification rate of 68.51%, considered as good accuracy.

For further evaluation, you can also create a model for a different number of neighbors.

Re-generating Model for K=7

Let's build KNN classifier model for k=7.

#Import knearest neighbors Classifier model
from sklearn.neighbors import KNeighborsClassifier

#Create KNN Classifier
knn = KNeighborsClassifier(n_neighbors=7)

#Train the model using the training sets, y_train)

#Predict the response for test dataset
y_pred = knn.predict(X_test)

Model Evaluation for k=7

Let's again estimate, how accurately the classifier or model can predict the type of cultivars for k=7.

#Import scikit-learn metrics module for accuracy calculation
from sklearn import metrics
# Model Accuracy, how often is the classifier correct?
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.777777777778

Well, you got a classification rate of 77.77%, considered as good accuracy.

Here, you have increased the number of neighbors in the model and accuracy got increased. But, this is not necessary for each case that an increase in many neighbors increases the accuracy. For a more detailed understanding of it, you can refer section "How to decide the number of neighbors?" of this tutorial.


The training phase of K-nearest neighbor classification is much faster compared to other classification algorithms. There is no need to train a model for generalization, That is why KNN is known as the simple and instance-based learning algorithm. KNN can be useful in case of nonlinear data. It can be used with the regression problem. Output value for the object is computed by the average of k closest neighbors value.


The testing phase of K-nearest neighbor classification is slower and costlier in terms of time and memory. It requires large memory for storing the entire training dataset for prediction. KNN requires scaling of data because KNN uses the Euclidean distance between two data points to find nearest neighbors. Euclidean distance is sensitive to magnitudes. The features with high magnitudes will weight more than features with low magnitudes. KNN also not suitable for large dimensional data.

How to improve KNN?

For better results, normalizing data on the same scale is highly recommended. Generally, the normalization range considered between 0 and 1. KNN is not suitable for the large dimensional data. In such cases, dimension needs to reduce to improve the performance. Also, handling missing values will help us in improving results.


Congratulations, you have made it to the end of this tutorial!

In this tutorial, you have learned the K-Nearest Neighbor algorithm; it's working, eager and lazy learner, the curse of dimensionality, model building and evaluation on wine dataset using Python Scikit-learn package. Also, discussed its advantages, disadvantages, and performance improvement suggestions.

I look forward to hearing any feedback or questions. You can ask questions by leaving a comment, and I will try my best to answer it.

Check out our tutorial on Preprocessing in Data Science (Part 1): Centering, Scaling, and KNN

Introduction to Python

4 hours
Master the basics of data analysis with Python in just four hours. This online course will introduce the Python interface and explore popular packages.
See DetailsRight Arrow
Start Course

Intermediate Python

4 hours
Level up your data science skills by creating visualizations using Matplotlib and manipulating DataFrames with pandas.

Machine Learning with scikit-learn

4 hours
Learn how to build and tune predictive models and evaluate how well they'll perform on unseen data.
See all coursesRight Arrow
Data Science Concept Vector Image

How to Become a Data Scientist in 8 Steps

Find out everything you need to know about becoming a data scientist, and find out whether it’s the right career for you!
Jose Jorge Rodriguez Salgado's photo

Jose Jorge Rodriguez Salgado

12 min

DC Data in Soccer Infographic.png

How Data Science is Changing Soccer

With the Fifa 2022 World Cup upon us, learn about the most widely used data science use-cases in soccer.
Richie Cotton's photo

Richie Cotton

The 23 Top Python Interview Questions & Answers

Essential Python interview questions with examples for job seekers, final-year students, and data professionals.
Abid Ali Awan's photo

Abid Ali Awan

22 min

Plotly Express Cheat Sheet

Plotly is one of the most widely used data visualization packages in Python. Learn more about it in this cheat sheet.
DataCamp Team's photo

DataCamp Team

0 min

Getting started with Python cheat sheet

Python is the most popular programming language in data science. Use this cheat sheet to jumpstart your Python learning journey.
DataCamp Team's photo

DataCamp Team

8 min

Python pandas tutorial: The ultimate guide for beginners

Are you ready to begin your pandas journey? Here’s a step-by-step guide on how to get started. [Updated November 2022]
Vidhi Chugh's photo

Vidhi Chugh

15 min

See MoreSee More