Cursus
End-to-End Machine Learning
Inbegrepen bijPremium or Teams
Maak je gratis account aan
of
Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.Wil je 2 of meer mensen trainen?
Proberen DataCamp for BusinessPopulair bij mensen die bij duizenden bedrijven leren
Cursusbeschrijving
Introduction to End-to-End Machine Learning
Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models with this comprehensive course. Through engaging, real-world examples and hands-on exercises, you'll learn to tackle complex data problems and build powerful ML models. By the end of this course, you'll be equipped with the skills needed to create, monitor, and maintain high-performing models that deliver actionable insights. Transform your machine learning expertise with this comprehensive, hands-on course and become an end-to-end ML pro!
Evaluate and Improve Your Model
Start by learning the essentials of exploratory data analysis (EDA) and data preparation - you'll clean and preprocess your data, ensuring it's ready for model training. Next, master the art of feature engineering and selection to optimize your models for real-world challenges; learn how to use the Boruta library for feature selection, log experiments with MLFlow, and fine-tune your models using k-fold cross-validation. Uncover the secrets of effective error metrics and diagnose overfitting, setting your models up for success.
Deploy and Monitor Your Model
You'll also explore the importance of feature stores and model registries in end-to-end ML frameworks. Learn how to deploy and monitor your model's performance over time using Docker and AWS. Understand the concept of data drift and how to detect it using statistical tests. Implement feedback loops, retraining, and labeling strategies to maintain your models' performance in the face of ever-changing data.
This course will equip you with practical skills directly applicable to a career as a data scientist or machine learning engineer, allowing you to design, deploy, and maintain models; crucial skills to leverage the business impact of machine learning solutions.
Wat je nodig hebt
Supervised Learning with scikit-learnMLOps ConceptsDesign and Exploration
Model Training and Evaluation
Model Deployment
Model Monitoring
voltooid
Verklaring van voltooiing verdienen
Voeg deze kwalificatie toe aan je LinkedIn-profiel, cv of sollicitatiebrief.Deel het op social media en in je prestatiebeoordeling.
Inbegrepen bijPremium or Teams
Schrijf Je Nu inDoe mee 18 miljoen leerlingen en begin End-to-End Machine Learning Vandaag!
Maak je gratis account aan
of
Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.