Cursus
Retrieval Augmented Generation (RAG) with LangChain
GemiddeldVaardigheidsniveau
Bijgewerkt 12-2024Begin De Cursus Gratis
Inbegrepen bijPremium or Teams
PythonArtificial Intelligence3 Hr12 videos38 Opdrachten3,150 XP13,730Verklaring van voltooiing
Maak je gratis account aan
of
Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.Wil je 2 of meer mensen trainen?
Proberen DataCamp for BusinessPopulair bij mensen die bij duizenden bedrijven leren
Cursusbeschrijving
Build RAG Systems with LangChain
Retrieval Augmented Generation (RAG) is a technique used to overcome one of the main limitations of large language models (LLMs): their limited knowledge. RAG systems integrate external data from a variety of sources into LLMs. This process of connecting multiple different systems is usually tedious, but LangChain makes this a breeze!Learn State-of-the-Art Splitting and Retrieval Methods
Level-up your RAG architecture! You'll learn how to load and split code files, including Python and Markdown files to ensure that splits are "aware" of code syntax. You'll split your documents using tokens instead of characters to ensure that your retrieved documents stay within your model's context window. Discover how semantic splitting can help retain context by detecting when the subject in the text shifts and splitting at these points. Finally, learn to evaluate your RAG architecture robustly with LangSmith and Ragas.Discover the Graph RAG Architecture
Flip your RAG architecture on its head and discover how graph-based, rather than vector-based RAG systems can improve your system's understanding of the entities and relationships in your documents. You'll learn how to convert unstructured text data into graphs using LLMs to do the translation! Then, you'll store these graph documents in a Neo4j graph database and integrate it into a wider RAG system to complete the application.Wat je nodig hebt
Developing LLM Applications with LangChain1
Building RAG Applications with LangChain
2
Improving the RAG Architecture
3
Introduction to Graph RAG
Retrieval Augmented Generation (RAG) with LangChain
Cursus voltooid
Verklaring van voltooiing verdienen
Voeg deze kwalificatie toe aan je LinkedIn-profiel, cv of sollicitatiebrief.Deel het op social media en in je prestatiebeoordeling.
Inbegrepen bijPremium or Teams
Schrijf Je Nu inDoe mee 18 miljoen leerlingen en begin Retrieval Augmented Generation (RAG) with LangChain Vandaag!
Maak je gratis account aan
of
Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.