Premium project

The Android App Market on Google Play

Load, clean, and visualize scraped Google Play Store data to gain insights into the Android app market.

Start Project
10 Tasks1,500 XP34,951 Learners

Loved by learners at thousands of companies


Project Description

Mobile apps are everywhere. They are easy to create and can be lucrative. Because of these two factors, more and more apps are being developed. In this project, you will do a comprehensive analysis of the Android app market by comparing over ten thousand apps in Google Play across different categories. You'll look for insights in the data to devise strategies to drive growth and retention. The [data](https://www.kaggle.com/lava18/google-play-store-apps) for this project was scraped from the [Google Play](https://play.google.com/store/apps?hl=en) website. While there are many popular datasets for Apple App Store, there aren't many for Google Play apps, which is partially due to the increased difficulty in scraping the latter as compared to the former. The data files are as follows: - `apps.csv `: contains all the details of the apps on Google Play. These are the features that describe an app. - `user_reviews.csv`: contains 100 reviews for each app, [most helpful first](https://www.androidpolice.com/2019/01/21/google-play-stores-redesigned-ratings-and-reviews-section-lets-you-easily-filter-by-star-rating/). The text in each review has been pre-processed, passed through a sentiment analyzer engine and tagged with its sentiment score.

Project Tasks

  1. 1
    Google Play Store apps and reviews
  2. 2
    Data cleaning
  3. 3
    Correcting data types
  4. 4
    Exploring app categories
  5. 5
    Distribution of app ratings
  6. 6
    Size and price of an app
  7. 7
    Relation between app category and app price
  8. 8
    Filter out "junk" apps
  9. 9
    Popularity of paid apps vs free apps
  10. 10
    Sentiment analysis of user reviews
Technologies
Python Python
Topics
Data ManipulationData VisualizationProbability & StatisticsImporting & Cleaning Data
Lavanya Gupta Headshot

Lavanya Gupta

Machine Learning Engineer at PropTiger.com
Lavanya is a software engineer by profession with research interests in Data Science, Machine Learning and Deep Learning. She has a rich experience in leading data-driven production projects in the industry. She is a passionate programmer in Python, and loves to experiment with new datasets that she scrapes on her own!
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA