Learn fundamental probability concepts like random variables, mean and variance, probability distributions, and conditional probabilities.
By continuing you accept the Terms of Use and Privacy Policy, that your data will be stored outside of the EU, and that you are 16 years or older.
Probability is the study of regularities that emerge in the outcomes of random experiments. In this course, you'll learn about fundamental probability concepts like random variables (starting with the classic coin flip example) and how to calculate mean and variance, probability distributions, and conditional probability. We'll also explore two very important results in probability: the law of large numbers and the central limit theorem. Since probability is at the core of data science and machine learning, these concepts will help you understand and apply models more robustly. Chances are everywhere, and the study of probability will change the way you see the world. Let’s get random!
A coin flip is the classic example of a random experiment. The possible outcomes are heads or tails. This type of experiment, known as a Bernoulli or binomial trial, allows us to study problems with two possible outcomes, like “yes” or “no” and “vote” or “no vote.” This chapter introduces Bernoulli experiments, binomial distributions to model multiple Bernoulli trials, and probability simulations with the scipy library.
Until now we've been working with binomial distributions, but there are many probability distributions a random variable can take. In this chapter we'll introduce three more that are related to the binomial distribution: the normal, Poisson, and geometric distributions.
In this chapter you'll learn to calculate various kinds of probabilities, such as the probability of the intersection of two events and the sum of probabilities of two events, and to simulate those situations. You'll also learn about conditional probability and how to apply Bayes' rule.
No that you know how to calculate probabilities and important properties of probability distributions, we'll introduce two important results: the law of large numbers and the central limit theorem. This will expand your understanding on how the sample mean converges to the population mean as more data is available and how the sum of random variables behaves under certain conditions. We will also explore connections between linear and logistic regressions as applications of probability and statistics in data science.
A coin flip is the classic example of a random experiment. The possible outcomes are heads or tails. This type of experiment, known as a Bernoulli or binomial trial, allows us to study problems with two possible outcomes, like “yes” or “no” and “vote” or “no vote.” This chapter introduces Bernoulli experiments, binomial distributions to model multiple Bernoulli trials, and probability simulations with the scipy library.
In this chapter you'll learn to calculate various kinds of probabilities, such as the probability of the intersection of two events and the sum of probabilities of two events, and to simulate those situations. You'll also learn about conditional probability and how to apply Bayes' rule.
Until now we've been working with binomial distributions, but there are many probability distributions a random variable can take. In this chapter we'll introduce three more that are related to the binomial distribution: the normal, Poisson, and geometric distributions.
No that you know how to calculate probabilities and important properties of probability distributions, we'll introduce two important results: the law of large numbers and the central limit theorem. This will expand your understanding on how the sample mean converges to the population mean as more data is available and how the sum of random variables behaves under certain conditions. We will also explore connections between linear and logistic regressions as applications of probability and statistics in data science.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA