Skip to main content
HomePythonUnsupervised Learning in Python

Unsupervised Learning in Python

4.5+
74 reviews
Intermediate

Learn how to cluster, transform, visualize, and extract insights from unlabeled datasets using scikit-learn and scipy.

Start Course for Free
4 hours13 videos52 exercises
142,633 learnersTrophyStatement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
GroupTraining 2 or more people?Try DataCamp For Business

Loved by learners at thousands of companies


Course Description

Say you have a collection of customers with a variety of characteristics such as age, location, and financial history, and you wish to discover patterns and sort them into clusters. Or perhaps you have a set of texts, such as Wikipedia pages, and you wish to segment them into categories based on their content. This is the world of unsupervised learning, called as such because you are not guiding, or supervising, the pattern discovery by some prediction task, but instead uncovering hidden structure from unlabeled data. Unsupervised learning encompasses a variety of techniques in machine learning, from clustering to dimension reduction to matrix factorization. In this course, you'll learn the fundamentals of unsupervised learning and implement the essential algorithms using scikit-learn and SciPy. You will learn how to cluster, transform, visualize, and extract insights from unlabeled datasets, and end the course by building a recommender system to recommend popular musical artists.
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more
Try DataCamp for BusinessFor a bespoke solution book a demo.

In the following Tracks

Certification Available

Associate Data Scientist in Python

Go To Track

Associate AI Engineer for Data Scientists

Go To Track

Machine Learning Fundamentals with Python

Go To Track
  1. 1

    Clustering for Dataset Exploration

    Free

    Learn how to discover the underlying groups (or "clusters") in a dataset. By the end of this chapter, you'll be clustering companies using their stock market prices, and distinguishing different species by clustering their measurements.

    Play Chapter Now
    Unsupervised Learning
    50 xp
    How many clusters?
    50 xp
    Clustering 2D points
    100 xp
    Inspect your clustering
    100 xp
    Evaluating a clustering
    50 xp
    How many clusters of grain?
    100 xp
    Evaluating the grain clustering
    100 xp
    Transforming features for better clusterings
    50 xp
    Scaling fish data for clustering
    100 xp
    Clustering the fish data
    100 xp
    Clustering stocks using KMeans
    100 xp
    Which stocks move together?
    100 xp
  2. 2

    Visualization with Hierarchical Clustering and t-SNE

    In this chapter, you'll learn about two unsupervised learning techniques for data visualization, hierarchical clustering and t-SNE. Hierarchical clustering merges the data samples into ever-coarser clusters, yielding a tree visualization of the resulting cluster hierarchy. t-SNE maps the data samples into 2d space so that the proximity of the samples to one another can be visualized.

    Play Chapter Now
  3. 3

    Decorrelating Your Data and Dimension Reduction

    Dimension reduction summarizes a dataset using its common occuring patterns. In this chapter, you'll learn about the most fundamental of dimension reduction techniques, "Principal Component Analysis" ("PCA"). PCA is often used before supervised learning to improve model performance and generalization. It can also be useful for unsupervised learning. For example, you'll employ a variant of PCA will allow you to cluster Wikipedia articles by their content!

    Play Chapter Now
  4. 4

    Discovering Interpretable Features

    In this chapter, you'll learn about a dimension reduction technique called "Non-negative matrix factorization" ("NMF") that expresses samples as combinations of interpretable parts. For example, it expresses documents as combinations of topics, and images in terms of commonly occurring visual patterns. You'll also learn to use NMF to build recommender systems that can find you similar articles to read, or musical artists that match your listening history!

    Play Chapter Now
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more

In the following Tracks

Certification Available

Associate Data Scientist in Python

Go To Track

Associate AI Engineer for Data Scientists

Go To Track

Machine Learning Fundamentals with Python

Go To Track

In other tracks

Machine Learning Scientist with Python

datasets

Company stock price movementsEurovision 2016Fish measurementsGrainsLCD digitsMusical artistsWikipedia articlesWine

collaborators

Collaborator's avatar
Yashas Roy
Collaborator's avatar
Hugo Bowne-Anderson
Benjamin Wilson HeadshotBenjamin Wilson

Director of Research at lateral.io

Ben is a machine learning specialist and the director of research at lateral.io. He is passionate about learning and has worked as a data scientist in real-time bidding, e-commerce, and recommendation. Ben holds a PhD in mathematics and a degree in computer science.
See More

Don’t just take our word for it

*4.5
from 74 reviews
73%
11%
15%
1%
0%
Sort by
  • Li D.
    22 days

    Great course

  • Anna S.
    about 1 month

    Very informative

  • Pak I.
    about 1 month

    It is better to provide more details about the theory behind

  • DANIEL B.
    about 2 months

    Love this chapter. Very insightful and easy to understand. I might need to retake it again to fully understand it but it was great specially the words frequency!!!!

  • Nikki X.
    3 months

    This is the best course I have learnt from Datacamp so far. The instructor explained all key concepts in a simple, clear way, and the exercises are also helped me to gain better understanding to the learning through practice.

"Great course"

Li D.

"Very informative"

Anna S.

"It is better to provide more details about the theory behind"

Pak I.

Join over 14 million learners and start Unsupervised Learning in Python today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.