Skip to main content
HomeArtificial IntelligenceIntroduction to Deep Learning with PyTorch

Introduction to Deep Learning with PyTorch

4.2+
34 reviews
Intermediate

Learn how to build your first neural network, adjust hyperparameters, and tackle classification and regression problems in PyTorch.

Start Course for Free
4 hours16 videos50 exercises
26,662 learnersTrophyStatement of Accomplishment

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.
GroupTraining 2 or more people?Try DataCamp For Business

Loved by learners at thousands of companies


Course Description

Understanding the power of Deep Learning

Deep learning is everywhere: in smartphone cameras, voice assistants, and self-driving cars. It has even helped discover protein structures and beat humans at the game of Go. Discover this powerful technology and learn how to leverage it using PyTorch, one of the most popular deep learning libraries.

Train your first neural network

First, tackle the difference between deep learning and "classic" machine learning. You will learn about the training process of a neural network and how to write a training loop. To do so, you will create loss functions for regression and classification problems and leverage PyTorch to calculate their derivatives.

Evaluate and improve your model

In the second half, learn the different hyperparameters you can adjust to improve your model. After learning about the different components of a neural network, you will be able to create larger and more complex architectures. To measure your model performances, you will leverage TorchMetrics, a PyTorch library for model evaluation.

Upon completion, you will be able to leverage PyTorch to solve classification and regression problems on both tabular and image data using deep learning. A vital capability for experienced data professionals looking to advance their careers.
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more
Try DataCamp for BusinessFor a bespoke solution book a demo.

In the following Tracks

Associate AI Engineer for Data Scientists

Go To Track

Deep Learning in Python

Go To Track

Developing Large Language Models

Go To Track
  1. 1

    Introduction to PyTorch, a Deep Learning Library

    Free

    Self-driving cars, smartphones, search engines... Deep learning is now everywhere. Before you begin building complex models, you will become familiar with PyTorch, a deep learning framework. You will learn how to manipulate tensors, create PyTorch data structures, and build your first neural network in PyTorch.

    Play Chapter Now
    Introduction to deep learning with PyTorch
    50 xp
    Machine learning vs. deep learning
    100 xp
    Creating tensors and accessing attributes
    100 xp
    Creating tensors from NumPy arrays
    100 xp
    Creating our first neural network
    50 xp
    Your first neural network
    100 xp
    Stacking linear layers
    100 xp
    Discovering activation functions
    50 xp
    Activate your understanding!
    50 xp
    The sigmoid and softmax functions
    100 xp
  2. 2

    Training Our First Neural Network with PyTorch

    To train a neural network in PyTorch, you will first need to understand the job of a loss function. You will then realize that training a network requires minimizing that loss function, which is done by calculating gradients. You will learn how to use these gradients to update your model's parameters, and finally, you will write your first training loop.

    Play Chapter Now
  3. 3

    Neural Network Architecture and Hyperparameters

    Hyperparameters are parameters, often chosen by the user, that control model training. The type of activation function, the number of layers in the model, and the learning rate are all hyperparameters of neural network training. Together, we will discover the most critical hyperparameters of a neural network and how to modify them.

    Play Chapter Now
  4. 4

    Evaluating and Improving Models

    Training a deep learning model is an art, and to make sure our model is trained correctly, we need to keep track of certain metrics during training, such as the loss or the accuracy. We will learn how to calculate such metrics and how to reduce overfitting using an image dataset as an example.

    Play Chapter Now
For Business

GroupTraining 2 or more people?

Get your team access to the full DataCamp library, with centralized reporting, assignments, projects and more

In the following Tracks

Associate AI Engineer for Data Scientists

Go To Track

Deep Learning in Python

Go To Track

Developing Large Language Models

Go To Track

In other tracks

Machine Learning Fundamentals in PythonMachine Learning Scientist in Python

datasets

Water PotabilityFace Mask Dataset

collaborators

Collaborator's avatar
Amy Peterson
Collaborator's avatar
James Chapman
Collaborator's avatar
George Boorman

audio recorded by

Maham Khan's avatar
Maham Khan
Maham Khan HeadshotMaham Khan

Senior Data Scientist, YouView TV

Maham is a Data Scientist on a mission to make data skills accessible for everyone. She's worked on creating toolkits and exploring experimental applications of data science for urban analytics, disaster risk management, and climate change mitigation at the World Bank. She has a background in Experimental Psychology and Philosophy from the University of Oxford and Urban Data Science from NYU.
See More
Thomas Hossler HeadshotThomas Hossler

Senior Machine Learning Engineer

Thomas is passionate about AI, the environment, and education, and is always looking for new challenges. He specializes in computer vision, machine learning model training and deployment (cloud and edge), and data pipelines.
See More

Don’t just take our word for it

*4.2
from 34 reviews
62%
15%
18%
0%
6%
Sort by
  • Chamath A.
    11 days

    Great! Covers from basics to in-depth in clear well structured way. Both beginner and professional user friendly. Complimentary to other course in PyTorch track.

  • Vuyo M.
    17 days

    i loved it

  • Franck K.
    22 days

    Nice course! Explanations were more detailed than usual, with great examples.

  • Mithunvenkatesh m.
    about 1 month

    the content was great and the delivery ( gave the breadth and depth ) required for Deeplearning for Pytorch

  • Maximilian J.
    2 months

    Very good fundamental introduction to Deep Learning and PyTorch

"Great! Covers from basics to in-depth in clear well structured way. Both beginner and professional user friendly. Complimentary to other course in PyTorch track."

Chamath A.

"i loved it"

Vuyo M.

"Nice course! Explanations were more detailed than usual, with great examples."

Franck K.

FAQs

Join over 14 million learners and start Introduction to Deep Learning with PyTorch today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.