Nick Carchedi
Nick Carchedi

Director of Content at DataCamp

Prior to leading the Content team at DataCamp, Nick earned his master's degree at Johns Hopkins Biostatistics and worked as a data scientist for McKinsey. Nick's passion for teaching data science began in graduate school, where he was heavily involved in tutoring fellow students, developing the Johns Hopkins Data Science Specialization, and building the swirl R package.

See More
  • Jeff Paadre

    Jeff Paadre


Course Description

It's commonly said that data scientists spend 80% of their time cleaning and manipulating data and only 20% of their time actually analyzing it. For this reason, it is critical to become familiar with the data cleaning process and all of the tools available to you along the way. This course provides a very basic introduction to cleaning data in R using the tidyr, dplyr, and stringr packages. After taking the course you'll be able to go from raw data to awesome insights as quickly and painlessly as possible!

  1. 1

    Introduction and exploring raw data


    This chapter will give you an overview of the process of data cleaning with R, then walk you through the basics of exploring raw data.

  2. Tidying data

    This chapter will give you an overview of the principles of tidy data, how to identify messy data, and what to do about it.

  3. Preparing data for analysis

    This chapter will teach you how to prepare your data for analysis. We will look at type conversion, string manipulation, missing and special values, and outliers and obvious errors.

  4. Putting it all together

    In this chapter, you will practice everything you've learned from the first three chapters in order to clean a messy dataset using R.