Premium project

Disney Movies and Box Office Success

Explore Disney movie data, then build a linear regression model to predict box office success.

Start Project
10 Tasks1,500 XP

Loved by learners at thousands of companies


Project Description

Since the 1930s, Walt Disney Studios has released more than 600 films covering a wide range of genres. While some movies are indeed directed towards kids, many are intended for a broad audience. In this project, you will analyze data to see how Disney movies have changed in popularity since its first movie release. You will also perform hypothesis testing to see what aspects of a movie contribute to its success. This project assumes that you can manipulate data using pandas and can make basic plots using Seaborn. You should also be familiar with statistical inference and be able to perform two-sample bootstrap hypothesis tests for difference of means. The dataset used in this project is a modified version of the Disney Character Success dataset from [Kelly Garrett](https://data.world/kgarrett/disney-character-success-00-16).

Project Tasks

  1. 1
    The dataset
  2. 2
    Top ten movies at the box office
  3. 3
    Movie genre trend
  4. 4
    Visualize the genre popularity trend
  5. 5
    Data transformation
  6. 6
    The genre effect
  7. 7
    Confidence intervals for regression parameters (i)
  8. 8
    Confidence intervals for regression parameters (ii)
  9. 9
    Confidence intervals for regression parameters (iii)
  10. 10
    Should Disney make more action and adventure movies?
Technologies
Python Python
Topics
Data ManipulationData VisualizationProbability & StatisticsImporting & Cleaning Data
Sirinda Palahan Headshot

Sirinda Palahan

Assistant Professor at University of the Thai Chamber of Commerce
Sirinda is an assistant professor in the School of Science and School of Business. She is the head of a bachelor’s degree program in Big Data Management for the School of Business. She has a Ph.D. degree in Computer Science and Engineering from Pennsylvania State University. Her main interests are data analysis and big data for business.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA