Saltar al contenido principal
InicioMachine Learning

Curso

Introducción al control de versiones de datos con DVC

Intermedio
Actualizado 3/2025
Explora el Control de Versiones de Datos para la gestión de datos en ML. Configura, automatiza y evalúa modelos.
Comienza el curso gratis

Incluido conPremium or Teams

DVCMachine Learning3 horas12 vídeos35 Ejercicios2,500 XPCertificado de logros

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Este curso ofrece una introducción completa al Control de Versiones de Datos (DVC), una herramienta diseñada para la gestión eficiente y el versionado de datos de aprendizaje automático. Comprenderás el ciclo de vida del producto de aprendizaje automático, diferenciarás el versionado de datos del versionado de código y explorarás las funciones y casos de uso de DVC.

Explorando las funciones de DVC

Comprenderás las motivaciones que hay detrás del versionado de datos, el ciclo de vida del aprendizaje automático y las distintas características y casos de uso de DVC. También aprenderás sobre la configuración de DVC, abarcando la instalación, la inicialización del repositorio y el archivo .dvcignore. Explorarás los archivos de caché y de preparación de DVC, aprenderás a añadir y eliminar archivos, a gestionar cachés y a comprender los mecanismos subyacentes. Aprenderás sobre las remotas de DVC, explicarás la distinción entre DVC y las remotas de Git, añadirás remotas, las listarás y las modificarás. Aprenderás a interactuar con las remotas, a enviar y recibir datos, a comprobar versiones concretas y a traer datos a la caché.

Automatizar y evaluar

Estarás motivado para automatizar los pipelines de ML, haciendo hincapié en la modularización del código y la creación de un archivo de configuración. Se te presentará DVC pipelines como grafos acíclicos dirigidos, con experiencia práctica en la adición de etapas y sus entradas y salidas. Practicarás la ejecución eficaz de estas canalizaciones para permitir diferentes casos de uso en el entrenamiento de modelos de aprendizaje automático. El curso concluye centrándose en la evaluación, mostrando cómo se realiza el seguimiento de las métricas y las parcelas en DVC.

Prerrequisitos

Supervised Learning with scikit-learnIntroduction to Git
1

Introducción a DVC

Iniciar capítulo
2

DVC Configuración y gestión de datos

Iniciar capítulo
3

Tuberías en DVC

Iniciar capítulo
Introducción al control de versiones de datos con DVC
Curso
Completo

Obtener certificado de logros

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 16 millones de estudiantes y empezar Introducción al control de versiones de datos con DVC hoy

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.