Saltar al contenido principal
InicioPythonBayesian Data Analysis in Python

Bayesian Data Analysis in Python

Learn all about the advantages of Bayesian data analysis, and apply it to a variety of real-world use cases!

Comience El Curso Gratis
4 Horas14 Videos49 Ejercicios
10.222 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Bayesian data analysis is an increasingly popular method of statistical inference, used to determine conditional probability without having to rely on fixed constants such as confidence levels or p-values. In this course, you’ll learn how Bayesian data analysis works, how it differs from the classical approach, and why it’s an indispensable part of your data science toolbox. You’ll get to grips with A/B testing, decision analysis, and linear regression modeling using a Bayesian approach as you analyze real-world advertising, sales, and bike rental data. Finally, you’ll get hands-on with the PyMC3 library, which will make it easier for you to design, fit, and interpret Bayesian models.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, solicite una demonstración.
  1. 1

    The Bayesian way

    Gratuito

    Take your first steps in the Bayesian world. In this chapter, you’ll be introduced to the basic concepts of probability and statistical distributions, as well as to the famous Bayes' Theorem, the cornerstone of Bayesian methods. Finally, you’ll build your first Bayesian model to draw conclusions from randomized coin tosses.

    Reproducir Capítulo Ahora
    Who is Bayes? What is Bayes?
    50 xp
    Bayesians vs. Frequentists
    100 xp
    Probability distributions
    100 xp
    Probability and Bayes' Theorem
    50 xp
    Let's play cards
    100 xp
    Bayesian spam filter
    100 xp
    What does the test say?
    50 xp
    Tasting the Bayes
    50 xp
    Tossing a coin
    100 xp
    The more you toss, the more you learn
    100 xp
    Hey, is this coin fair?
    100 xp
  2. 2

    Bayesian estimation

    It’s time to look under the Bayesian hood. You’ll learn how to apply Bayes' Theorem to drug-effectiveness data to estimate the parameters of probability distributions using the grid approximation technique, and update these estimates as new data become available. Next, you’ll learn how to incorporate prior knowledge into the model before finally practicing the important skill of reporting results to a non-technical audience.

    Reproducir Capítulo Ahora
  3. 3

    Bayesian inference

    Apply your newly acquired Bayesian data analysis skills to solve real-world business challenges. You’ll work with online sales marketing data to conduct A/B tests, decision analysis, and forecasting with linear regression models.

    Reproducir Capítulo Ahora
  4. 4

    Bayesian linear regression with pyMC3

    In this final chapter, you’ll take advantage of the powerful PyMC3 package to easily fit Bayesian regression models, conduct sanity checks on a model's convergence, select between competing models, and generate predictions for new data. To wrap up, you’ll apply what you’ve learned to find the optimal price for avocados in a Bayesian data analysis case study. Good luck!

    Reproducir Capítulo Ahora

Sets De Datos

Ads DataBikes Data

Colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Justin Saddlemyer
Michał Oleszak HeadshotMichał Oleszak

Machine Learning Engineer

Ver Mas

¿Qué tienen que decir otros alumnos?

Únete a 13 millones de estudiantes y empeza Bayesian Data Analysis in Python hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.