Saltar al contenido principal
InicioPythonUnsupervised Learning in Python

Unsupervised Learning in Python

Learn how to cluster, transform, visualize, and extract insights from unlabeled datasets using scikit-learn and scipy.

Comience El Curso Gratis
4 Horas13 Videos52 Ejercicios
135.472 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Say you have a collection of customers with a variety of characteristics such as age, location, and financial history, and you wish to discover patterns and sort them into clusters. Or perhaps you have a set of texts, such as Wikipedia pages, and you wish to segment them into categories based on their content. This is the world of unsupervised learning, called as such because you are not guiding, or supervising, the pattern discovery by some prediction task, but instead uncovering hidden structure from unlabeled data. Unsupervised learning encompasses a variety of techniques in machine learning, from clustering to dimension reduction to matrix factorization. In this course, you'll learn the fundamentals of unsupervised learning and implement the essential algorithms using scikit-learn and SciPy. You will learn how to cluster, transform, visualize, and extract insights from unlabeled datasets, and end the course by building a recommender system to recommend popular musical artists.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, solicite una demonstración.
  1. 1

    Clustering for Dataset Exploration

    Gratuito

    Learn how to discover the underlying groups (or "clusters") in a dataset. By the end of this chapter, you'll be clustering companies using their stock market prices, and distinguishing different species by clustering their measurements.

    Reproducir Capítulo Ahora
    Unsupervised Learning
    50 xp
    How many clusters?
    50 xp
    Clustering 2D points
    100 xp
    Inspect your clustering
    100 xp
    Evaluating a clustering
    50 xp
    How many clusters of grain?
    100 xp
    Evaluating the grain clustering
    100 xp
    Transforming features for better clusterings
    50 xp
    Scaling fish data for clustering
    100 xp
    Clustering the fish data
    100 xp
    Clustering stocks using KMeans
    100 xp
    Which stocks move together?
    100 xp
  2. 2

    Visualization with Hierarchical Clustering and t-SNE

    In this chapter, you'll learn about two unsupervised learning techniques for data visualization, hierarchical clustering and t-SNE. Hierarchical clustering merges the data samples into ever-coarser clusters, yielding a tree visualization of the resulting cluster hierarchy. t-SNE maps the data samples into 2d space so that the proximity of the samples to one another can be visualized.

    Reproducir Capítulo Ahora
  3. 3

    Decorrelating Your Data and Dimension Reduction

    Dimension reduction summarizes a dataset using its common occuring patterns. In this chapter, you'll learn about the most fundamental of dimension reduction techniques, "Principal Component Analysis" ("PCA"). PCA is often used before supervised learning to improve model performance and generalization. It can also be useful for unsupervised learning. For example, you'll employ a variant of PCA will allow you to cluster Wikipedia articles by their content!

    Reproducir Capítulo Ahora
  4. 4

    Discovering Interpretable Features

    In this chapter, you'll learn about a dimension reduction technique called "Non-negative matrix factorization" ("NMF") that expresses samples as combinations of interpretable parts. For example, it expresses documents as combinations of topics, and images in terms of commonly occurring visual patterns. You'll also learn to use NMF to build recommender systems that can find you similar articles to read, or musical artists that match your listening history!

    Reproducir Capítulo Ahora

En las siguientes pistas

Científico de datos asociado en PythonFundamentos del machine learning con PythonCientífico de Machine Learning con Python

Colaboradores

Collaborator's avatar
Yashas Roy
Collaborator's avatar
Hugo Bowne-Anderson
Benjamin Wilson HeadshotBenjamin Wilson

Director of Research at lateral.io

Ver Mas

¿Qué tienen que decir otros alumnos?

Únete a 13 millones de estudiantes y empeza Unsupervised Learning in Python hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.