Saltar al contenido principal
InicioPythonAnálisis de Series Temporales en Python

Análisis de Series Temporales en Python

Comience El Curso Gratis
4 Horas17 Videos59 Ejercicios
57.504 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Desde los precios de las acciones hasta los datos climáticos, los datos de series temporales se encuentran en una gran variedad de ámbitos, y ser capaz de trabajar eficazmente con esos datos es una habilidad cada vez más importante para los científicos de datos. Este curso te introducirá en el análisis de series temporales en Python. Después de aprender qué es una serie temporal, conocerás varios modelos de series temporales que van desde los modelos autorregresivos y de medias móviles hasta los modelos de cointegración. Por el camino, aprenderás a estimar, predecir y simular estos modelos utilizando bibliotecas estadísticas en Python. Verás numerosos ejemplos de cómo se utilizan estos modelos, con especial énfasis en las aplicaciones en finanzas.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, solicite una demonstración.
  1. 1

    Correlación y Autocorrelación

    Gratuito

    En este capítulo se te presentarán las ideas de correlación y autocorrelación de las series temporales. La correlación describe la relación entre dos series temporales y la autocorrelación describe la relación de una serie temporal con sus valores pasados.

    Reproducir Capítulo Ahora
    Introducción al curso
    50 xp
    Una aplicación "fina" de las series temporales
    100 xp
    Fusionar series temporales con fechas diferentes
    100 xp
    Correlación de dos series temporales
    50 xp
    Correlación de acciones y bonos
    100 xp
    Los platillos volantes no están relacionados con los mercados volantes
    100 xp
    Regresión lineal simple
    50 xp
    Observar el R-cuadrado de una regresión
    100 xp
    Emparejar la correlación con el resultado de la regresión
    50 xp
    Autocorrelation
    50 xp
    Una estrategia popular que utiliza la autocorrelación
    100 xp
    ¿Están autocorrelacionados los tipos de interés?
    100 xp
  2. 5

    Ponerlo todo junto

    Este capítulo te mostrará cómo modelizar dos series conjuntamente utilizando modelos de cointegración. Luego terminarás con un caso práctico en el que examinarás una serie temporal de datos de temperatura de la ciudad de Nueva York.

    Reproducir Capítulo Ahora

En las siguientes pistas

Series temporales con Python

Colaboradores

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Nick Solomon
Rob Reider HeadshotRob Reider

Consultant at Quantopian and Adjunct Professor at NYU

Ver Mas

¿Qué tienen que decir otros alumnos?

Únete a 13 millones de estudiantes y empeza Análisis de Series Temporales en Python hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.