curso
Introducción al Aprendizaje Profundo en Python
Intermedio
Actualizado 1/2025Comienza el curso gratis
Incluido de forma gratuitaPremium or Teams
PythonArtificial Intelligence4 horas17 vídeos50 ejercicios3,500 XP251,863Declaración de cumplimiento
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Descubre las aplicaciones del aprendizaje profundo
El aprendizaje profundo es la técnica de machine learning que está detrás de las capacidades más apasionantes de la robótica, el procesamiento del lenguaje natural, el reconocimiento de imágenes y la inteligencia artificial. En este curso de 4 horas, adquirirás conocimientos prácticos sobre cómo aplicar tus conocimientos de Python al aprendizaje profundo con la biblioteca Keras 2.0.Explora los Modelos Keras con un Colaborador de la Biblioteca
Impartido por el ex-científico de datos de Google y colaborador de Keras, Dan Becker, este curso de aprendizaje profundo explora los modelos de redes neuronales y cómo puedes generar predicciones con ellos. Los primeros capítulos te ayudarán a comprender mejor la propagación hacia delante y hacia atrás y cómo funcionan en la práctica.La biblioteca Keras es una biblioteca de Python que puede ayudarte a desarrollar y revisar modelos de aprendizaje profundo. Como muchas bibliotecas de Python, es gratuita, de código abierto y muy fácil de usar. Empezarás creando un modelo Keras y aprenderás a compilarlo, ajustarlo y clasificarlo antes de hacer predicciones. Una vez que hayas completado este curso, tendrás todas las herramientas que necesitas para construir redes neuronales profundas y empezar a experimentar con redes más amplias y profundas con el tiempo.
Profundiza en el Aprendizaje Profundo
Este curso forma parte de varios programas de machine learning y deep learning, que te ofrecen vías claras para desarrollar tus habilidades y experiencia en esta área una vez que hayas completado el curso introductorio, tanto si quieres completar un proyecto personal como si quieres avanzar hacia una carrera como científico de machine learning.Prerrequisitos
Supervised Learning with scikit-learn1
Fundamentos del aprendizaje profundo y las redes neuronales
2
Optimización de una red neuronal con propagación hacia atrás
3
Construir modelos de aprendizaje profundo con keras
4
Ajuste fino de los modelos keras
Introducción al Aprendizaje Profundo en Python
Curso Completo
Obtener Declaración de Logro
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 15 millones de estudiantes y empezar Introducción al Aprendizaje Profundo en Python ¡Hoy!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.