Ga naar de hoofdinhoud
ThuisPython

Leerpad

Supervised Machine Learning in Python

Bijgewerkt 01-2025
Master the most popular supervised machine learning techniques to begin making predictions with labeled data.
Start Track Gratis

Inbegrepen bijPremium or Teams

PythonMachine Learning25 Hr5,282

Maak je gratis account aan

of

Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.
Group

Wil je 2 of meer mensen trainen?

Proberen DataCamp for Business

Populair bij mensen die bij duizenden bedrijven leren

Trackbeschrijving

Supervised Machine Learning in Python

Master the fundamentals of supervised machine learning and discover how to make predictions using labeled data. Join the ML revolution today! If you’re new to machine learning, or want to specialize in supervised machine learning, this is an ideal place to start.You’ll start by learning about and implementing core supervised learning models, such as K-Nearest Neighbors (KNN), Logistic Regression, Linear Regression, Support Vector Machines (SVMs), and tree-based models with the popular scikit-learn library.You’ll also discover how to use state-of-the-art algorithms like XGBoost to efficiently boost modelling performance on tabular datasets.To get the most out of your models, you’ll learn about different hyperparameter tuning techniques and how to decide which technique to use for your use case.You’ll finish the track by bringing your knowledge of these diverse models together to learn about ensemble learning, where different models are combined to improve performance and solve more complex problems.By the time you’re finished, you’ll have mastered the essential supervised machine learning concepts and be able to apply them in Python.

Wat je nodig hebt

Er zijn geen vereisten voor deze track.
  • Course

    1

    Supervised Learning with scikit-learn

    Grow your machine learning skills with scikit-learn in Python. Use real-world datasets in this interactive course and learn how to make powerful predictions!

  • Project

    bonus

    Predictive Modeling for Agriculture

    Dive into agriculture using supervised machine learning and feature selection to aid farmers in crop cultivation and solve real-world problems.

  • Course

    Learn the fundamentals of gradient boosting and build state-of-the-art machine learning models using XGBoost to solve classification and regression problems.

  • Course

    Learn how to build advanced and effective machine learning models in Python using ensemble techniques such as bagging, boosting, and stacking.

Supervised Machine Learning in Python
6 Cursussen
Track
voltooid

Verklaring van voltooiing verdienen

Voeg deze kwalificatie toe aan je LinkedIn-profiel, cv of sollicitatiebrief.
Deel het op social media en in je prestatiebeoordeling.

Inbegrepen bijPremium or Teams

Schrijf Je Nu in

Doe mee 18 miljoen leerlingen en begin Supervised Machine Learning in Python Vandaag!

Maak je gratis account aan

of

Door verder te gaan, ga je akkoord met onze Gebruiksvoorwaarden, ons Privacybeleid en dat je gegevens in de VS worden opgeslagen.