Paul Love has completed

# Case Studies: Network Analysis in R

4 hours
4,150 XP

## Course Description

Now that you're familiar with the basics of network analysis it's time to see how to apply those concepts to large real-world data sets. You'll work through three different case studies, each building on your previous work. These case studies are working with the kinds of data you'll see in both academic and industry settings. We'll explore some of the computational and visualization challenges you'll face and how to overcome them. Your knowledge of igraph will continue to grow, but we'll also leverage other visualization libraries that will help you bring your visualizations to the web.

### .css-1goj2uy{margin-right:8px;}Group.css-gnv7tt{font-size:20px;font-weight:700;white-space:nowrap;}.css-12nwtlk{box-sizing:border-box;margin:0;min-width:0;color:#05192D;font-size:16px;line-height:1.5;font-size:20px;font-weight:700;white-space:nowrap;}Training 2 or more people?

Try DataCamp for BusinessFor a bespoke solution book a demo.
1. 1

### Exploring graphs through time

Free

In this chapter you'll explore a subset of an Amazon purchase graph. You'll build on what you've already learned, finding important products and discovering what drives purchases. You'll also examine how graphs can change through time by looking at the graph during different time periods.

Play Chapter Now
50 xp
100 xp
Clustering and Reciprocity
100 xp
Important Products
100 xp
What Makes an Important Product?
100 xp
Exploring temporal structure
50 xp
Metrics through time
100 xp
Plotting Metrics Over Time
100 xp
2. 2

In this lesson you'll explore some Twitter data about R by looking at conversations using '#rstats'. First you'll look at the raw data and think about how you want to build your graph. There's a number of ways to do this, and we'll cover two ways: retweets and mentions. You'll build those graphs and then compare them on a number of metrics.

3. 3

### Bike sharing in Chicago

In this chapter you will analyze data from a Chicago bike sharing network. We will build on the concepts already covered in the introductory course, and add a few new ones to handle graphs with weighted edges. You will also start with data in a slightly more raw form and cover how to build your graph up from a data source you might find.

4. 4

### Other ways to visualize graph data

So far everything we've done has been using plotting from igraph. It provides many powerful ways to plot your graph data. However many people prefer interacting with other plotting frameworks like ggplot2, or even interactive frameworks like d3.js. In this lesson you'll look at other plotting libraries that build on the ggplot2 framework. You'll also look at other non-"hairball" type methods like hive plots, as well as building interactive and animated plots.

In the following tracks

Network Analysis

Collaborators

Ted Hart

Senior Data Scientist

See More