premium course

Statistical Thinking in Python (Part 2)

Start Course For Free Play Trailer
  • 15 Videos
  • 67 Exercises
  • 4 hours 
  • 1,121 Participants
  • 5450 XP


Justin Bois
Justin Bois

Justin Bois is a lecturer in the Division of Biology and Biological Engineering at the California Institute of Technology. He teaches nine different classes there, nearly all of which heavily feature Python. He is dedicated to empowering students in the biological sciences with quantitative tools, particularly data analysis skills. Beyond biologists, he is thrilled to develop courses for DataCamp, whose students are an excited bunch of burgeoning data scientists!


Hugo Bowne-Anderson Hugo Bowne-Anderson

Yashas Roy Yashas Roy

Vincent Lan Vincent Lan

Course Description

After completing Statistical Thinking in Python (Part 1), you have the probabilistic mindset and foundational hacker stats skills to dive into data sets and extract useful information from them. In this course, you will do just that, expanding and honing your hacker stats toolbox to perform the two key tasks in statistical inference, parameter estimation and hypothesis testing. You will work with real data sets as you learn, culminating with analysis of measurements of the beaks of the Darwin's famous finches. You will emerge this course with new knowledge and lots of practice under your belt, ready to attack your own inference problems out in the world.

1Parameter estimation by optimization Free

When doing statistical inference, we speak the language of probability. A probability distribution that describes your data has parameters. So, a major goal of statistical inference is to estimate the values of these parameters, which allows us to concisely and unambiguously describe our data and draw conclusions from it. In this chapter, you will learn how to find the optimal parameters, those that best describe your data.

Bootstrap confidence intervals 

To "pull yourself up by your bootstraps" is a classic idiom meaning that you achieve a difficult task by yourself with no help at all. In statistical inference, you want to know what would happen if you could repeat your data acquisition an infinite number of times. This task is impossible, but can we use only the data we actually have to get close to the same result as an infinitude of experiments? The answer is yes! The technique to do it is aptly called bootstrapping. This chapter will introduce you to this extraordinarily powerful tool.

Hypothesis test examples 

As you saw from the last chapter, hypothesis testing can be a bit tricky. You need to define the null hypothesis, figure out how to simulate it, and define clearly what it means to be "more extreme" in order to compute the p-value. Like any skill, practice makes perfect, and this chapter gives you some good practice with hypothesis tests.