Skip to main content

Data Visualization for Everyone

An introduction to data visualization with no coding involved.

Start Course for Free
2 Hours14 Videos43 Exercises50,947 Learners2550 XPData Literacy Fundamentals Track

Create Your Free Account



By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

Visualizing data using charts, graphs, and maps is one of the most impactful ways to communicate complex data. In this course, you’ll learn how to choose the best visualization for your dataset, and how to interpret common plot types like histograms, scatter plots, line plots and bar plots. You'll also learn about best practices for using colors and shapes in your plots, and how to avoid common pitfalls. Through hands-on exercises, you'll visually explore over 20 datasets including global life expectancies, Los Angeles home prices, ESPN's 100 most famous athletes, and the greatest hip-hop songs of all time.

  1. 1

    Visualizing distributions


    In this chapter you’ll learn the value of visualizations, using real-world data on British monarchs, Australian salaries, Panamanian animals, and US cigarette consumption, to graphically represent the spread of a variable using histograms and box plots.

    Play Chapter Now
    A plot tells a thousand words
    50 xp
    Motivating visualization
    50 xp
    Continuous vs. categorical variables
    100 xp
    50 xp
    Interpreting histograms
    100 xp
    Adjusting bin width
    50 xp
    Box plots
    50 xp
    Interpreting box plots
    100 xp
    Ordering box plots
    50 xp
  2. 2

    Visualizing two variables

    You’ll learn how to interpret data plots and understand core data visualization concepts such as correlation, linear relationships, and log scales. Through interactive exercises, you’ll also learn how to explore the relationship between two continuous variables using scatter plots and line plots. You'll explore data on life expectancies, technology adoption, COVID-19 coronavirus cases, and Swiss juvenile offenders. Next you’ll be introduced to two other popular visualizations—bar plots and dot plots—often used to examine the relationship between categorical variables and continuous variables. Here, you'll explore famous athletes, health survey data, and the price of a Big Mac around the world.

    Play Chapter Now
  3. 3

    The color and the shape

    It’s time to make your insights even more impactful. Discover how you can add color and shape to make your data visualizations clearer and easier to understand, especially when you find yourself working with more than two variables at the same time. You'll explore Los Angeles home prices, technology stock prices, math anxiety, the greatest hiphop songs, scotch whisky preferences, and fatty acids in olive oil.

    Play Chapter Now
  4. 4

    99 problems but a plot ain't one of them

    In this final chapter, you’ll learn how to identify and avoid the most common plot problems. For example, how can you avoid creating misleading or hard to interpret plots, and will your audience understand what it is you’re trying to tell them? All will be revealed! You'll explore wind directions, asthma incidence, and seats in the German Federal Council.

    Play Chapter Now

In the following tracks

Data Literacy Fundamentals


lis-sulmontLis Sulmont
Richie Cotton Headshot

Richie Cotton

Curriculum Architect at DataCamp

Richie is a Learning Solutions Architect at DataCamp. He has been using R since 2004, in the fields of proteomics, debt collection, and chemical health and safety. He has released almost 30 R packages on CRAN and Bioconductor – most famously the assertive suite of packages – as well as creating and contributing to many others. He also has written two books on R programming, Learning R and Testing R Code.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA