Skip to main content

Linear Classifiers in Python

In this course you will learn the details of linear classifiers like logistic regression and SVM.

Start Course for Free
4 Hours13 Videos44 Exercises38,438 Learners3200 XPMachine Learning Fundamentals TrackMachine Learning Scientist Track

Create Your Free Account



By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

In this course you'll learn all about using linear classifiers, specifically logistic regression and support vector machines, with scikit-learn. Once you've learned how to apply these methods, you'll dive into the ideas behind them and find out what really makes them tick. At the end of this course you'll know how to train, test, and tune these linear classifiers in Python. You'll also have a conceptual foundation for understanding many other machine learning algorithms.

  1. 1

    Applying logistic regression and SVM


    In this chapter you will learn the basics of applying logistic regression and support vector machines (SVMs) to classification problems. You'll use the scikit-learn library to fit classification models to real data.

    Play Chapter Now
    scikit-learn refresher
    50 xp
    KNN classification
    100 xp
    Comparing models
    50 xp
    50 xp
    Applying logistic regression and SVM
    50 xp
    Running LogisticRegression and SVC
    100 xp
    Sentiment analysis for movie reviews
    100 xp
    Linear classifiers
    50 xp
    Which decision boundary is linear?
    50 xp
    Visualizing decision boundaries
    100 xp
  2. 4

    Support Vector Machines

    In this chapter you will learn all about the details of support vector machines. You'll learn about tuning hyperparameters for these models and using kernels to fit non-linear decision boundaries.

    Play Chapter Now

In the following tracks

Machine Learning FundamentalsMachine Learning Scientist


nicksolomonNick SolomonkarawooKara Woo
Mike Gelbart Headshot

Mike Gelbart

Instructor, the University of British Columbia

Mike Gelbart is an Instructor in the Department of Computer Science at the University of British Columbia (UBC) in Vancouver, Canada. He also teaches in, and co-designed, the Master of Data Science program at UBC. Mike received his undergraduate degree in physics from Princeton University and his PhD from the machine learning group at Harvard University, working on hyperparameter optimization for machine learning.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA