Skip to main content

Supervised Learning in R: Classification

In this course you will learn the basics of machine learning for classification.

Start Course for Free
4 Hours14 Videos55 Exercises76,244 Learners3950 XPData Scientist TrackMachine Learning Fundamentals TrackMachine Learning Scientist Track

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.

Loved by learners at thousands of companies


Course Description

This beginner-level introduction to machine learning covers four of the most common classification algorithms. You will come away with a basic understanding of how each algorithm approaches a learning task, as well as learn the R functions needed to apply these tools to your own work.
  1. 1

    k-Nearest Neighbors (kNN)

    Free

    As the kNN algorithm literally "learns by example" it is a case in point for starting to understand supervised machine learning. This chapter will introduce classification while working through the application of kNN to self-driving vehicle road sign recognition.

    Play Chapter Now
    Classification with Nearest Neighbors
    50 xp
    Recognizing a road sign with kNN
    100 xp
    Thinking like kNN
    50 xp
    Exploring the traffic sign dataset
    100 xp
    Classifying a collection of road signs
    100 xp
    What about the 'k' in kNN?
    50 xp
    Understanding the impact of 'k'
    50 xp
    Testing other 'k' values
    100 xp
    Seeing how the neighbors voted
    100 xp
    Data preparation for kNN
    50 xp
    Why normalize data?
    50 xp

In the following tracks

Data ScientistMachine Learning FundamentalsMachine Learning Scientist

Collaborators

n10i
Nick Carchedi
nicksolomon
Nick Solomon

Prerequisites

Intermediate R
Brett Lantz Headshot

Brett Lantz

Senior Data Scientist at Sony PlayStation

Brett Lantz currently works as a data scientist at Sony PlayStation, is the author of Machine Learning with R, and teaches machine learning at the Global School in Empirical Research Methods summer program. After training as a sociologist, Brett has applied his endless thirst for data to projects that involve understanding and predicting human behavior in fields including epidemiology, higher education fundraising, and most recently, the video gaming industry.
See More

What do other learners have to say?

Join over 10 million learners and start Supervised Learning in R: Classification today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.