Saltar al contenido principal
InicioPython

Curso

Anomaly Detection in Python

Intermedio
Actualizado 3/2025
Detect anomalies in your data analysis and expand your Python statistical toolkit in this four-hour course.
Comienza el curso gratis

Incluido conPremium or Teams

PythonProbability & Statistics4 horas16 vídeos59 Ejercicios4,950 XP4,924Certificado de logros

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Spot Anomalies in Your Data Analysis


Extreme values or anomalies are present in almost any dataset, and it is critical to detect and deal with them before continuing statistical exploration. When left untouched, anomalies can easily disrupt your analyses and skew the performance of machine learning models.

Learn to Use Estimators Like Isolation Forest and Local Outlier Factor


In this course, you'll leverage Python to implement a variety of anomaly detection methods. You'll spot extreme values visually and use tested statistical techniques like Median Absolute Deviation for univariate datasets. For multivariate data, you'll learn to use estimators such as Isolation Forest, k-Nearest-Neighbors, and Local Outlier Factor. You'll also learn how to ensemble multiple outlier classifiers into a low-risk final estimator. You'll walk away with an essential data science tool in your belt: anomaly detection with Python.

Expand Your Python Statistical Toolkit


Better anomaly detection means better understanding of your data, and particularly, better root cause analysis and communication around system behavior. Adding this skill to your existing Python repertoire will help you with data cleaning, fraud detection, and identifying system disturbances.

Prerrequisitos

Supervised Learning with scikit-learn
1

Detecting Univariate Outliers

Iniciar capítulo
2

Isolation Forests with PyOD

Iniciar capítulo
3

Distance and Density-based Algorithms

Iniciar capítulo
4

Time Series Anomaly Detection and Outlier Ensembles

Iniciar capítulo
Anomaly Detection in Python
Curso
Completo

Obtener certificado de logros

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 16 millones de estudiantes y empezar Anomaly Detection in Python hoy

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.