Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas
Preferido por estudiantes en miles de empresas
Descripción del curso
Welcome to the 3rd course in our series on causal inference concepts and methods created by Duke University with support from eBay, Inc. Designed to teach you causal inference concepts, methods, and how to code in R with realistic data, this course focuses on how to use regression to find causal effects, why they can be controversial, and what they look like in practice. We’ll stay away from dense statistical math and focus instead on higher level concepts that data scientists need to always consider when examining and making inferences about data. The course instructors and creators are Dr. Matt Masten (Duke University), James Speckart (Duke), Brian Aronson (Duke), Dr. Tyler Ransom (University of Oklahoma), and Alexandra Cooper (Duke).
Empresas
¿Entrenar a 2 o más personas?
Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más- 1
Regressions 1: Introduction to Regression As Causality
GratuitoThis chapter will introduce you to using regression analysis to find causal effects
Course Trailer for Causal Inference with R - Regression50 xpIntroduction to Regression Analysis50 xpInterpreting Regressions50 xpReversing Causal Direction50 xpLet’s Code: Comparing Hospital Quality to Mortality Rates50 xpComparing Hospital Quality to Mortality Rates100 xpRegression Models and Policy Implementation50 xpBasic Elements of a Regression Table50 xpReading a Bivariate Regression Table50 xpReading a Multivariate (Multiple) Regression Table50 xpThe Relationship between Economic Development and Property Rights50 xpRegressions with small coefficients and small confidence intervals50 xpRecalling terminology50 xpMultiple Regression Models50 xpLet’s Code: Running a Regression Model50 xpRunning a Regression Model: A Simple Beginning100 xpRunning a Regression Model: Improving Our Model100 xpSteps Prior to Analysis with Regression Models50 xp - 2
Regressions 2: Using Regression to Estimate Causal Effects
GratuitoThis chapter will introduce you to using regression analysis to find causal effects
Using Regression to Get Causal Effects: Unconfoundedness50 xpRegressing Soda pop and K-pop50 xpKnowing it all50 xpThe Uncounfoundedness Assumption50 xpHow to Compute Regressions: Ordinary Least Squares (OLS)50 xpLet’s Code: Toying with OLS - Outliers & Statistical Power50 xpToying with OLS I: Outliers100 xpToying with OLS II: Statistical Power100 xpLet’s Code: Toying with OLS III - Model Selection50 xpToying with OLS III: Model Selection100 xpCommon Statistical Terms and Transformations in Regression Models50 xpIdenfifying Non-Linear Relationships50 xpStatistical Interactions in Regression Models50 xpLet’s Code: Creating a Regression Model with Interaction Effects50 xpCreating a Regression Model With Interaction Effects: Part 1100 xpCreating a Regression Model With Interaction Effects: Part 2, Mediating and Moderating Effects100 xpLogistic Regression Models50 xpWhen to Use a Logistic Regression Model50 xpDefining The Average Effect of Treatment on the Treated50 xpAverage Effect of Treatment on the Treated50 xpHow to Compute ATE Under Unconfoundedness, and What Not to Do50 xpLet’s Code: Practice with Survey Weights50 xpPractice with Survey Weights: Part 1100 xpPractice with Survey Weights: Part 2100 xpWhen Survey Weights Are Unnecessary50 xp - 3
Regressions 3: Introduction to Matching Methods
GratuitoThis chapter will introduce you to using matching methods to find causal effects
Matching Methods50 xpShould Megan Use Matching Methods With Her Survey?50 xpCan Your Survey Design Affect Your Matching Methods?50 xpProblems with Matching Methods When Comparing Individuals?50 xpThe Lifetime Earnings of Veterans and Nonveterans50 xpWhy We Need Matching Methods50 xpThe Unconfoundedness Assumption in Angrist's Study on the Effect of Veteran Status on Lifetime Earnings50 xpReplication and Validity50 xpCausal Inference with Matching Methods50 xpThe Effect of Volunteer Military Service on Lifetime Earnings50 xpLet’s Code: Communication Skills in Video Games50 xpCommunication Skills in Video Games: Do We Need to Use Matching Methods?100 xpCommunication Skills in Video Games: Propensity Score Matching in R100 xpThe Credibility of the Unconfoundedness Assumption50 xpAssumptions and Causality50 xp
Empresas
¿Entrenar a 2 o más personas?
Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más¿Qué tienen que decir otros alumnos?
¡Únete a 14 millones de estudiantes y empieza Causal Inference with R - Regression hoy mismo!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.