Saltar al contenido principal
InicioPythonFoundations of Probability in Python

Foundations of Probability in Python

Learn fundamental probability concepts like random variables, mean and variance, probability distributions, and conditional probabilities.

Comience El Curso Gratis
5 Horas16 Videos61 Ejercicios
11.669 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Probability is the study of regularities that emerge in the outcomes of random experiments. In this course, you'll learn about fundamental probability concepts like random variables (starting with the classic coin flip example) and how to calculate mean and variance, probability distributions, and conditional probability. We'll also explore two very important results in probability: the law of large numbers and the central limit theorem. Since probability is at the core of data science and machine learning, these concepts will help you understand and apply models more robustly. Chances are everywhere, and the study of probability will change the way you see the world. Let’s get random!
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, solicite una demonstración.
  1. 1

    Let's start flipping coins

    Gratuito

    A coin flip is the classic example of a random experiment. The possible outcomes are heads or tails. This type of experiment, known as a Bernoulli or binomial trial, allows us to study problems with two possible outcomes, like “yes” or “no” and “vote” or “no vote.” This chapter introduces Bernoulli experiments, binomial distributions to model multiple Bernoulli trials, and probability simulations with the scipy library.

    Reproducir Capítulo Ahora
    Let’s flip a coin in Python
    50 xp
    Flipping coins
    100 xp
    Using binom to flip even more coins
    100 xp
    Probability mass and distribution functions
    50 xp
    Predicting the probability of defects
    100 xp
    Predicting employment status
    100 xp
    Predicting burglary conviction rate
    100 xp
    Expected value, mean, and variance
    50 xp
    Calculating the expected value and variance
    50 xp
    Calculating the sample mean
    100 xp
    Checking the result
    100 xp
    Calculating the mean and variance of a sample
    100 xp
  2. 2

    Calculate some probabilities

    In this chapter you'll learn to calculate various kinds of probabilities, such as the probability of the intersection of two events and the sum of probabilities of two events, and to simulate those situations. You'll also learn about conditional probability and how to apply Bayes' rule.

    Reproducir Capítulo Ahora
  3. 4

    Probability meets statistics

    No that you know how to calculate probabilities and important properties of probability distributions, we'll introduce two important results: the law of large numbers and the central limit theorem. This will expand your understanding on how the sample mean converges to the population mean as more data is available and how the sum of random variables behaves under certain conditions. We will also explore connections between linear and logistic regressions as applications of probability and statistics in data science.

    Reproducir Capítulo Ahora

Colaboradores

Collaborator's avatar
Hillary Green-Lerman
Collaborator's avatar
Adrián Soto

Requisitos Previos

Introduction to Statistics in Python
Alexander A. Ramírez M. HeadshotAlexander A. Ramírez M.

CEO at Synergy Vision

Ver Mas

¿Qué tienen que decir otros alumnos?

Únete a 13 millones de estudiantes y empeza Foundations of Probability in Python hoy!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.