Saltar al contenido principal
InicioRHierarchical and Mixed Effects Models in R

Hierarchical and Mixed Effects Models in R

In this course you will learn to fit hierarchical models with random effects.

Comience El Curso Gratis
4 Horas13 Videos55 Ejercicios
19.378 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

This course begins by reviewing slopes and intercepts in linear regressions before moving on to random-effects. You'll learn what a random effect is and how to use one to model your data. Next, the course covers linear mixed-effect regressions. These powerful models will allow you to explore data with a more complicated structure than a standard linear regression. The course then teaches generalized linear mixed-effect regressions. Generalized linear mixed-effects models allow you to model more kinds of data, including binary responses and count data. Lastly, the course goes over repeated-measures analysis as a special case of mixed-effect modeling. This kind of data appears when subjects are followed over time and measurements are collected at intervals. Throughout the course you'll work with real data to answer interesting questions using mixed-effects models.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Estadístico con R

Ir a la pista
  1. 1

    Overview and Introduction to Hierarchical and Mixed Models

    Gratuito

    The first chapter provides an example of when to use a mixed-effect and also describes the parts of a regression. The chapter also examines a student test-score dataset with a nested structure to demonstrate mixed-effects.

    Reproducir Capítulo Ahora
    What is a hierarchical model?
    50 xp
    Examples of hierarchical datasets
    100 xp
    Multi-level student data
    100 xp
    Exploring multiple-levels: Classrooms and schools
    100 xp
    Parts of a regression
    50 xp
    Intercepts
    100 xp
    Slopes and multiple regression
    100 xp
    Random-effects in regressions with school data
    50 xp
    Random-effect intercepts
    100 xp
    Random-effect slopes
    100 xp
    Building the school model
    100 xp
    Interpreting the school model
    100 xp
  2. 3

    Generalized Linear Mixed Effect Models

    This chapter extends linear mixed-effects models to include non-normal error terms using generalized linear mixed-effects models. By altering the model to include a non-normal error term, you are able to model more kinds of data with non-linear responses. After reviewing generalized linear models, the chapter examines binomial data and count data in the context of mixed-effects models.

    Reproducir Capítulo Ahora
  3. 4

    Repeated Measures

    This chapter shows how repeated-measures analysis is a special case of mixed-effect modeling. The chapter begins by reviewing paired t-tests and repeated measures ANOVA. Next, the chapter uses a linear mixed-effect model to examine sleep study data. Lastly, the chapter uses a generalized linear mixed-effect model to examine hate crime data from New York state through time.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Estadístico con R

Ir a la pista

Sets De Datos

Illinois chlamydia dataMaryland crime dataClassroom dataBirth rate dataNew York hate crime data

Colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Richard Erickson HeadshotRichard Erickson

Data Scientist

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 13 millones de estudiantes y empieza Hierarchical and Mixed Effects Models in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.