Saltar al contenido principal
InicioPythonIntroduction to MongoDB in Python

Introduction to MongoDB in Python

Learn to manipulate and analyze flexibly structured data with MongoDB.

Comience El Curso Gratis
4 horas16 vídeos60 ejercicios
20.085 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

MongoDB is a tool to explore data structured as you see fit. As a NoSQL database, it doesn't follow the strict relational format imposed by SQL. By providing capabilities that typically require adding layers to SQL, it collapses complexity. With dynamic schema, you can handle vastly different data together and consolidate analytics. The flexibility of MongoDB empowers you to keep improving and fix issues as your requirements evolve. In this course, you will learn the MongoDB language and apply it to search and analytics. Working with unprocessed data from the official nobelprize.org API, you will explore and answer questions about Nobel Laureates and prizes.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Flexibly Structured Data

    Gratuito

    This chapter is about getting a bird's-eye view of the Nobel Prize data's structure. You will relate MongoDB documents, collections, and databases to JSON and Python types. You'll then use filters, operators, and dot notation to explore substructure.

    Reproducir Capítulo Ahora
    Intro to MongoDB and the Nobel Prize dataset
    50 xp
    Count documents in a collection
    50 xp
    Listing databases and collections
    100 xp
    List fields of a document
    100 xp
    Finding documents
    50 xp
    "born" approximation
    50 xp
    Composing filters
    100 xp
    We've got options
    100 xp
    Dot notation: reach into substructure
    50 xp
    Choosing tools
    50 xp
    Starting our ascent
    100 xp
    Our 'born' approximation, and a special laureate
    100 xp
  2. 3

    Get Only What You Need, and Fast

    You can now query collections with ease and collect documents to examine and analyze with Python. But this process is sometimes slow and onerous for large collections and documents. This chapter is about various ways to speed up and simplify that process.

    Reproducir Capítulo Ahora
  3. 4

    Aggregation Pipelines: Let the Server Do It For You

    You've used projection, sorting, indexing, and limits to speed up data fetching. But there are still annoying performance bottlenecks in your analysis pipelines. You still need to fetch a ton of data. Thus, network bandwidth and downstream processing and memory capacity still impact performance. This chapter is about using MongoDB to perform aggregations for you on the server.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

conjuntos de datos

Laureates datasetPrizes dataset

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Mari Nazary
Collaborator's avatar
Greg Wilson
Collaborator's avatar
Alex Yarosh
Donny Winston HeadshotDonny Winston

Donny is a computer systems engineer at Lawrence Berkeley National Lab.

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Introduction to MongoDB in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.