Saltar al contenido principal
InicioRLinear Algebra for Data Science in R

Linear Algebra for Data Science in R

This course is an introduction to linear algebra, one of the most important mathematical topics underpinning data science.

Comience El Curso Gratis
4 horas15 vídeos56 ejercicios
15.424 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Linear algebra is one of the most important set of tools in applied mathematics and data science. In this course, you’ll learn how to work with vectors and matrices, solve matrix-vector equations, perform eigenvalue/eigenvector analyses and use principal component analysis to do dimension reduction on real-world datasets. All analyses will be performed in R, one of the world’s most-popular programming languages.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Introduction to Linear Algebra

    Gratuito

    In this chapter, you will learn about the key objects in linear algebra, such as vectors and matrices. You will understand why they are important and how they interact with each other.

    Reproducir Capítulo Ahora
    Motivations
    50 xp
    Creating Vectors in R
    100 xp
    The Algebra of Vectors
    100 xp
    Creating Matrices in R
    100 xp
    Matrix-Vector Operations
    50 xp
    Matrix-Vector Compatibility
    50 xp
    Matrix Multiplication as a Transformation
    100 xp
    Reflections
    100 xp
    Matrix-Matrix Calculations
    50 xp
    Matrix Multiplication Compatibility
    50 xp
    Matrix Multiplication - Order Matters
    100 xp
    Intro to The Matrix Inverse
    100 xp
  2. 4

    Principal Component Analysis

    “Big Data” is ubiquitous in data science and its applications. However, redundancy in these datasets can be problematic. In this chapter, we learn about principal component analysis and how it can be used in dimension reduction.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

conjuntos de datos

NFL Player datasetWNBA Massey Matrix datasetWNBA Point Differentials dataset

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
David Campos
Collaborator's avatar
Shon Inouye

requisitos previos

Introduction to R
Eric Eager HeadshotEric Eager

VP of Research and Development at SumerSports

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Linear Algebra for Data Science in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.