Saltar al contenido principal
InicioRMultivariate Probability Distributions in R

Multivariate Probability Distributions in R

Learn to analyze, plot, and model multivariate data.

Comience El Curso Gratis
4 horas15 vídeos51 ejercicios
8053 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

When working with data that contains many variables, we are often interested in studying the relationship between these variables using multivariate statistics. In this course, you'll learn ways to analyze these datasets. You will also learn about common multivariate probability distributions, including the multivariate normal, the multivariate-t, and some multivariate skew distributions. You will then be introduced to techniques for representing high dimensional data in fewer dimensions, including principal component analysis (PCA) and multidimensional scaling (MDS).
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Reading and plotting multivariate data

    Gratuito

    In this introduction to multivariate data, you will learn how to read and summarize it. You will learn how to summarize multivariate data using descriptive statistics, such as the mean vector, variance-covariance, and correlation matrices. You'll then explore plotting techniques to provide insights into multivariate data.

    Reproducir Capítulo Ahora
    Reading multivariate data
    50 xp
    Reading multivariate data using read.table
    100 xp
    Specifying datatypes for columns
    100 xp
    Mean vector and variance-covariance matrix
    50 xp
    Calculating the mean vector
    100 xp
    Calculating the variance-covariance matrix
    100 xp
    Calculating the correlation matrix
    100 xp
    Plotting multivariate data
    50 xp
    Pairs plot using base graphics and lattice
    100 xp
    Plotting multivariate data using ggplot
    100 xp
    3D plotting techniques
    100 xp
  2. 2

    Multivariate Normal Distribution

    This chapter will introduce you to the most important and widely used multivariate probability distribution, the multivariate normal. You will learn how to generate random samples from a multivariate normal distribution and how to calculate and plot the densities and probabilities under this distribution. You will also learn how to test if a dataset follows multivariate normality.

    Reproducir Capítulo Ahora
  3. 3

    Other Multivariate Distributions

    This chapter introduces a host of probability distributions to model non-normal data. In particular, you will be introduced to multivariate t-distributions, which can model heavier tails and are a generalization of the univariate Student's t-distribution. You will be introduced to various skew distributions, which are specifically designed to model data that are right or left skewed.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

conjuntos de datos

IrisWineBirthweight

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Collaborator's avatar
Amy Peterson
Surajit Ray HeadshotSurajit Ray

Senior Lecturer in Statistics, University of Glasgow

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Multivariate Probability Distributions in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.